1. By passing to projectivizations, it is easy to see that all m-dimensional (projective) linear subspaces $L \subset \mathbb{P}^n$ are parametrized by the Grassmannian $Gr(m+1, n+1)$. Now let $X \subset \mathbb{P}^n$ be a hypersurface defined by a degree d homogeneous polynomial $H(x_0, \ldots, x_n)$, and let $Z \subset Gr(m+1, n+1)$ be the subset corresponding to those linear subspaces $L \subset X \subset \mathbb{P}^n$ which actually belong to X. Show that Z is a closed subset of the Grassmannian. (HINT: Let $W \subset k^{n+1}$ the linear subspace in k^{n+1} corresponding to $L \subset \mathbb{P}^n$. Then $L \subset X$ iff the restriction of H to W is identically zero. Denote by S the universal subbundle on $Gr = Gr(m+1, n+1)$. Show that $Z \subset Gr(m+1, n+1)$ is the set of points where a certain section $s \in H^0(Gr, (Sym^d(S))^*)$ vanishes (the star stands for the dual vector bundle). Conclude that Z is closed.)

2. Normally one only defines Hilbert schemes for projective varieties (this is because of the way the Hilbert polynomial is defined). However, when the Hilbert polynomial is constant, i.e. $P(d) = m$, one can consider the Hilbert scheme of all length m zero-dimensional subschemes $\xi \subset X$ for any X. More precisely, such subschemes are given by quotients $O_X \to O_\xi \to 0$ where O_ξ is supported at finitely many closed points of X and $\dim_k H^0(X, O_\xi) = m$.

Let $Hilb^m(X)$ be the Hilbert scheme parametrizing all such quotients (it is not hard to prove that if $X \subset Y$ with Y projective and X open in Y, then $Hilb^m(X)$ is an open subscheme of $Hilb^m(Y)$). The purpose of this exercise is to identify $Hilb^m(k^2)$. Since $X = k^2$ is affine with the ring of regular functions $A = k[x, y]$, every sheaf of the type O_ξ comes from A-module A/I where $I \subset A$ is an ideal. Consider the support of $\overline{A/I}$, i.e. the set of all prime ideals $p \subset A$ such that $(A/I)_p \neq 0$.

(a) Show that the support coincides with the set $V(I)$ of all prime ideals which contain I.

(b) Suppose that A/I is finite dimensional over k. Prove that every ideal in $V(I)$ is maximal.

(c) Suppose that A/I is infinite-dimensional over k. Show that there exists $P \in V(I)$ such that A/P is infinite dimensional. (HINT: use the filtration $M_1 \subset M_2 \subset \ldots \subset M_n = A/I$ with $M_i / M_{i-1} \simeq A/P_i$ and part (a) above). Show, in addition, that such P cannot be maximal.
Parts (b), (c) mean that the sheaf $\widetilde{A/I}$ corresponds to a zero-dimensional subscheme iff A/I is finite dimensional over k. Hence $\text{Hilb}^m(k^2)$ simply parametrizes all ideals in A of finite codimension.

(d) Let $I \subset k[x, y]$ be an ideal of finite codimension m. Fix an m-dimensional vector space V over k and a vector space isomorphism $A/I \simeq V$. Let $v \in V$ be the image of $1 \in A$, and B_1, B_2 be the two linear operators on V which correspond to the action of x and y on A/I, respectively. Prove that

The operators B_1, B_2 commute and any vector subspace $W \subset V$ which contains v and satisfies $B_1(V) \subset V$, $B_2(V) \subset V$, is necessarily equal to V itself.

The triples (v, B_1, B_2) having this property are called stable.

(e) Show that the set of all stable triples U is an open subset of $V \times C$ where $C \subset \text{End}(V) \times \text{End}(V)$ is the closed subset formed by pairs of commuting operators.

(f) Show that $\text{Hilb}^m(k^2) \simeq U/GL(V)$ where an element $g \in GL(V)$ acts on U by taking (v, B_1, B_2) to $(gv, gB_1g^{-1}, gB_2g^{-1})$. Show, in addition, that the $GL(V)$-action on U is free.

The last result may be used to show that $\text{Hilb}^m(k^2)$ is smooth and irreducible of dimension $2m$.

2