Math 130c, Homework 6

All projective spaces are over a field k.

1. Let $i : X \hookrightarrow \mathbb{P}^r$ be a hypersurface defined by a homogeneous degree d polynomial. Compute the Hilbert polynomial of $i_* (\mathcal{O}_X)$ (HINT: Construct a short exact sequence $0 \to \mathcal{O}(-d) \to \mathcal{O} \to i_* (\mathcal{O}_X) \to 0$).

2. Let $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ be a short exact sequence of coherent sheaves on \mathbb{P}^r.
 (a) Show that if \mathcal{F}, \mathcal{H} are m-regular, then \mathcal{G} is also m-regular;
 (b) Show that if \mathcal{F}, \mathcal{G} are m-regular, then \mathcal{H} is also m-regular;
 (c) For $r = 1$, construct an example in which \mathcal{G}, \mathcal{H} are 0-regular, but \mathcal{F} is not 0-regular (HINT: take $\mathcal{G} = \mathcal{O}$ and use a short exact sequence from an exercise in one of the previous homework assignments).

3. Let $F : (Schemes) \to (Sets)$ be the functor which sends a scheme S to the abelian group $\Gamma(S, \mathcal{O}_S)$ (considered as a set). Find a scheme X for which there exists a bijective natural transformation $h_X \to F$.

1