ACM95b/100b Lecture Notes

Caltech 2004

The Method of Frobenius

Consider the equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0, \tag{1}
\end{equation*}
$$

where $x=0$ is a regular singular point. Then $p(x)$ and $q(x)$ are analytic at the origin and have convergent power series expansions

$$
\begin{equation*}
p(x)=\sum_{k=0}^{\infty} p_{k} x^{k}, \quad q(x)=\sum_{k=0}^{\infty} q_{k} x^{k}, \quad|x|<\rho \tag{2}
\end{equation*}
$$

for some $\rho>0$. Let $r_{1}, r_{2}\left(\mathbb{R}\left(r_{1}\right) \geq \mathbb{R}\left(r_{2}\right)\right)$ be the roots of the indicial equation

$$
\begin{equation*}
F(r)=r(r-1)+p_{0} r+q_{0}=0 \tag{3}
\end{equation*}
$$

Depending on the nature of the roots, there are three forms for the two linearly independent solutions on the intervals $0<|x|<\rho$. The power series that appear in these solutions are convergent at least in the interval $|x|<\rho$. (Proof: Coddington)

Case 1: Distinct roots not differing by an integer $\left(r_{1}-r_{2} \neq N, N \in \mathbb{Z}\right)$

The two solutions have the form

$$
\begin{align*}
& y_{1}(x)=x^{r_{1}} \sum_{k=0}^{\infty} a_{k}\left(r_{1}\right) x^{k} \tag{4}\\
& y_{2}(x)=x^{r_{2}} \sum_{k=0}^{\infty} b_{k}\left(r_{2}\right) x^{k} \tag{5}
\end{align*}
$$

where $a_{k}\left(r_{1}\right)$ and $b_{k}\left(r_{2}\right)$ are determined by substitution of (4) or (5) into equation (1) to obtain the corresponding recurrence relation.

Case 2: Repeated root $\left(r_{1}=r_{2}\right)$
The first solution $y_{1}(x)$ has form (4) and the second solution has the form

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \log x+x^{r_{1}} \sum_{k=1}^{\infty} b_{k}\left(r_{1}\right) x^{k} \tag{6}
\end{equation*}
$$

Note that the term $k=0$ is ommitted as it would just give a multiple of $y_{1}(x)$.
Case 3: Roots differing by an integer $\left(r_{1}-r_{2}=N, N \in \mathbb{Z}^{+}\right)$
The first solution $y_{1}(x)$ has form (4) and the second solution has the form

$$
\begin{equation*}
y_{2}(x)=c y_{1}(x) \log x+x^{r_{2}} \sum_{k=0}^{\infty} b_{k}\left(r_{2}\right) x^{k} \tag{7}
\end{equation*}
$$

where c may turn out to be zero. The constant $b_{N}\left(r_{2}\right)$ is arbitrary and may be set to zero. This is evident by writing

$$
\begin{equation*}
x^{r_{2}} \sum_{k=0}^{\infty} b_{k}\left(r_{2}\right) x^{k}=b_{0} x^{r_{2}}+\ldots+b_{N-1} x^{r_{2}+N-1}+\underbrace{x^{r_{1}}\left(b_{N}+b_{N+1} x+b_{N+2} x^{2}+\ldots\right)}_{\text {form of } y_{1}(x)} \tag{8}
\end{equation*}
$$

so we see that $b_{N}\left(r_{2}\right)$ plays the same role as $a_{0}\left(r_{1}\right)$ and merely adds multiples of $y_{1}(x)$ to $y_{2}(x)$.

Example: Case 1

Consider

$$
\begin{equation*}
4 x y^{\prime \prime}+2 y^{\prime}+y=0 \tag{9}
\end{equation*}
$$

so $x=0$ is a regular singular point with $p(x)=\frac{1}{2}$ and $q(x)=\frac{x}{4}$. The power series in y_{1} and y_{2} will converge for $|x|<\infty$ since p and q have convergent power series in this interval. By (3), the indicial equation is

$$
\begin{equation*}
r(r-1)+\frac{1}{2} r=0 \quad \Rightarrow \quad r^{2}-\frac{1}{2} r=0 \tag{10}
\end{equation*}
$$

so $r_{1}=\frac{1}{2}$ and $r_{2}=0$ (Note: $p_{0}=\frac{1}{2}, q_{0}=0$). Substituting $y=x^{r} \sum_{k=0}^{\infty} a_{k} x^{k}$ into (9) and shifting the indices of the first two series so all terms are of form x^{k+r} we get

$$
\begin{equation*}
4 \sum_{k=-1}^{\infty}(k+r+1)(k+r) a_{k+1} x^{k+r}+2 \sum_{k=-1}^{\infty}(k+r+1) a_{k+1} x^{k+r}+\sum_{k=0}^{\infty} a_{k} x^{k+r}=0 . \tag{11}
\end{equation*}
$$

All coefficients of powers x^{k+r} must equate to zero to obtain a solution. The lowest power is x^{r-1} for $k=-1$ and this yields

$$
\begin{equation*}
4 r(r-1)+2 r=0 \Rightarrow r^{2}-\frac{1}{2} r=0 \tag{12}
\end{equation*}
$$

which is just the indicial equation as expected. For $k \geq 0$, we obtain

$$
\begin{equation*}
4(k+r+1)(k+r) a_{k+1}+2(k+r+1) a_{k+1}+a_{k}=0 \tag{13}
\end{equation*}
$$

corresponding to the recurrence relation

$$
\begin{equation*}
a_{k+1}=\frac{-a_{k}}{(2 k+2 r+2)(2 k+2 r+1)}, \quad k=0,1,2 \ldots \tag{14}
\end{equation*}
$$

First Solution: To find y_{1} apply (14) with $r=r_{1}=\frac{1}{2}$ to get the recurrence relation

$$
\begin{equation*}
a_{k+1}=\frac{-a_{k}}{(2 k+3)(2 k+2)}, \quad k=0,1,2 \ldots \tag{15}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{1}=\frac{-a_{0}}{3 \cdot 2}, \quad a_{2}=\frac{-a_{1}}{5 \cdot 4}, \quad a_{3}=\frac{-a_{2}}{7 \cdot 6}, \quad \ldots \tag{16}
\end{equation*}
$$

so

$$
\begin{equation*}
a_{1}=-\frac{a_{0}}{3!}, \quad a_{2}=\frac{a_{0}}{5!}, \quad a_{3}=-\frac{a_{0}}{7!}, \quad \ldots \tag{17}
\end{equation*}
$$

Since a_{0} is arbitrary, let $a_{0}=1$ so

$$
\begin{equation*}
a_{k}\left(r_{1}\right)=\frac{(-1)^{k}}{(2 k+1)!}, \quad k=0,1,2 \ldots \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{1}(x)=x^{1 / 2} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{k} . \tag{19}
\end{equation*}
$$

Second Solution: To find y_{2}, just apply (14) with $r=r_{2}=0$ to get the recurrence relation

$$
\begin{equation*}
b_{k+1}=\frac{-b_{k}}{(2 k+2)(2 k+1)} . \tag{20}
\end{equation*}
$$

Letting the arbitrary constant $b_{0}=1$, then

$$
\begin{equation*}
b_{k}\left(r_{2}\right)=\frac{(-1)^{k}}{(2 k)!} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
y_{2}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{k} \tag{22}
\end{equation*}
$$

Example: Case 2

Consider

$$
\begin{equation*}
L y \equiv x y^{\prime \prime}+y^{\prime}-y=0 \tag{23}
\end{equation*}
$$

with $p(x)=1$ and $q(x)=-x$ and a regular singular point at $x=0$. The power series in y_{1} and y_{2} will converge for $|x|<\infty$ since p and q have convergent power series in this interval. The indicial equation is given by

$$
\begin{equation*}
r(r-1)+r=0 \Rightarrow r^{2}=0 \tag{24}
\end{equation*}
$$

so $r_{1}=r_{2}=0$.
First solution: Substituting $y=\sum_{k=0}^{\infty} a_{k} x^{k}$ into (23) results in

$$
\begin{equation*}
\sum_{k=0}^{\infty}(k+1) k a_{k+1} x^{k}+\sum_{k=0}^{\infty}(k+1) a_{k+1} x^{k}-\sum_{k=0}^{\infty} a_{k} x^{k}=0 \tag{25}
\end{equation*}
$$

after shifting indices in the first two series to express all terms as multiples of x_{k}. Regrouping terms gives

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left[(k+1) k a_{k+1}+(k+1) a_{k+1}-a_{k}\right] x^{k}=0 \tag{26}
\end{equation*}
$$

so equating all coefficients of powers of x to zero gives

$$
\begin{equation*}
a_{k+1}=\frac{a_{k}}{(k+1)^{2}}, \quad k \geq 0 \tag{27}
\end{equation*}
$$

Then for $k \geq 1$

$$
\begin{equation*}
a_{k}=\frac{a_{k-1}}{k^{2}}=\frac{a_{k-2}}{k^{2}(k-1)^{2}}=\ldots=\frac{a_{0}}{(k!)^{2}} \tag{28}
\end{equation*}
$$

Setting the arbitrary constant $a_{0}\left(r_{1}\right)=1$, the first solution is

$$
\begin{equation*}
y_{1}(x)=\sum_{k=0}^{\infty} \frac{1}{(k!)^{2}} x^{k}=1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\ldots \tag{29}
\end{equation*}
$$

Second solution: Consider substituting

$$
\begin{equation*}
y=y_{1}(x) \log x+\sum_{k=1}^{\infty} b_{k} x^{k} \tag{30}
\end{equation*}
$$

into (23). Then

$$
\begin{equation*}
y^{\prime}=\frac{y_{1}}{x}+y_{1}^{\prime} \log x+\frac{d}{d x} \sum_{k=1}^{\infty} b_{k} x^{k} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
x y^{\prime \prime}=x\left[-\frac{y_{1}}{x^{2}}+2 \frac{y_{1}^{\prime}}{x}+y_{1}^{\prime \prime} \log x+\frac{d^{2}}{d x^{2}} \sum_{k=1}^{\infty} b_{k} x^{k}\right] \tag{32}
\end{equation*}
$$

so making cancellations we obtain

$$
\begin{equation*}
L\left[y_{1}\right] \log x+2 y_{1}^{\prime}+L\left[\sum_{k=1}^{\infty} b_{k} x^{k}\right]=0 . \tag{33}
\end{equation*}
$$

Now we know $L\left[y_{1}\right]=0$ so this gives

$$
\begin{equation*}
L\left[\sum_{k=1}^{\infty} b_{k} x^{k}\right]=-2 y_{1}^{\prime} \tag{34}
\end{equation*}
$$

or in detail after appropriate index shifts to the first and second series

$$
\begin{equation*}
b_{1}+\sum_{k=1}^{\infty}\left[(k+1) k b_{k+1}+(k+1) b_{k+1}-b_{k}\right] x^{k}=-2-x-\frac{x^{2}}{6}-\ldots \tag{35}
\end{equation*}
$$

Equating coefficients gives

$$
\begin{aligned}
b_{1} & =-2 \\
4 b_{2}-b_{1} & =-1 \\
9 b_{3}-b_{2} & =-\frac{1}{6}
\end{aligned}
$$

so

$$
\begin{equation*}
b_{1}=-2, \quad b_{2}=-\frac{3}{4}, \quad b_{3}=-\frac{11}{108}, \quad \ldots \tag{36}
\end{equation*}
$$

The second linearly independent solution is then

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \log x+\left[-2 x-\frac{3}{4} x^{2}-\frac{11}{108} x^{3}-\ldots\right] \tag{37}
\end{equation*}
$$

Example: Case 3 (log term required)

Consider

$$
\begin{equation*}
L y \equiv x y^{\prime \prime}+y=0 \tag{38}
\end{equation*}
$$

with $p(x)=0$ and $q(x)=x$ and a regular singular point at $x=0$. The power series in y_{1} and y_{2} will converge for $|x|<\infty$ since p and q have convergent power series in this interval. The indicial equation is given by

$$
\begin{equation*}
r(r-1)=0 \tag{39}
\end{equation*}
$$

so $r_{1}=1$ and $r_{2}=0$.
First solution: Substituting $y=x^{r} \sum_{k=0}^{\infty} a_{k} x^{k}$ into (38) results in

$$
\begin{equation*}
\sum_{k=0}^{\infty}(r+k)(r+k-1) a_{k} x^{r+k-1}+\sum_{k=0}^{\infty} a_{k} x^{r+k}=0 \tag{40}
\end{equation*}
$$

Shifting indices in the second series and regrouping terms gives

$$
\begin{equation*}
r(r-1) a_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[(r+k)(r+k-1) a_{k}+a_{k-1}\right] x^{r+k-1}=0 \tag{41}
\end{equation*}
$$

Setting the coefficient of x^{r-1} to zero we recover the indicial equation with $r_{1}=1$ and $r_{2}=0$. Setting all the other coefficients to zero gives the recurrence relation

$$
\begin{equation*}
a_{k}=\frac{-a_{k-1}}{(r+k)(r+k-1)}, \quad k \geq 1 \tag{42}
\end{equation*}
$$

With $r=r_{1}$ this gives

$$
\begin{equation*}
a_{k}=\frac{-a_{k-1}}{(k+1) k}=\frac{a_{k-2}}{(k+1) k^{2}(k-1)}=\ldots=\frac{(-1)^{k} a_{0}}{(k+1)(k!)^{2}} \tag{43}
\end{equation*}
$$

Setting the arbitrary constant $a_{0}\left(r_{1}\right)=1$, the first solution is then

$$
\begin{equation*}
y_{1}(x)=x \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)(k!)^{2}} x^{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{144} \pm \ldots \tag{44}
\end{equation*}
$$

Second solution: First, let's see how we run into trouble if we fail to include the log term in the second solution. The recurrence relation (42) with $r=r_{2}=0$ becomes (with b_{k} replacing a_{k} since we are now using $r=r_{2}$)

$$
\begin{equation*}
b_{k}=\frac{-b_{k-1}}{k(k-1)}, \quad k \geq 1 \tag{45}
\end{equation*}
$$

This formula fails for $k=1$. As was anticipated, for roots of the form $r_{2}-r_{1}=N$ with $N \in \mathbb{Z}^{+}$it may not be possible to determine b_{N} if the \log term is ommitted from y_{2} (in our case $N=1$). For the second solution consider substituting

$$
\begin{equation*}
y=c y_{1}(x) \log x+x^{0} \sum_{k=0}^{\infty} b_{k} x^{k} \tag{46}
\end{equation*}
$$

into (38) so

$$
\begin{equation*}
x y^{\prime \prime}=\left[-\frac{c y_{1}}{x}+2 c y_{1}^{\prime}+c x y_{1}^{\prime \prime} \log x+x \frac{d^{2}}{d x^{2}} \sum_{k=0}^{\infty} b_{k} x^{k}\right] \tag{47}
\end{equation*}
$$

We then obtain

$$
\begin{equation*}
c L\left[y_{1}\right] \log x+2 c y_{1}^{\prime}-\frac{c y_{1}}{x}+L\left[\sum_{k=0}^{\infty} b_{k} x^{k}\right]=0 \tag{48}
\end{equation*}
$$

Now we know $L\left[y_{1}\right]=0$ so this gives

$$
\begin{equation*}
L\left[\sum_{k=0}^{\infty} b_{k} x^{k}\right]=-2 c y_{1}^{\prime}+\frac{c y_{1}}{x} . \tag{49}
\end{equation*}
$$

Expanding the left hand side gives

$$
\begin{equation*}
b_{0}+\left(2 b_{2}+b_{1}\right) x+\left(6 b_{3}+b_{2}\right) x^{2}+\left(12 b_{4}+b_{3}\right) x^{3}+\left(20 b_{5}+b_{4}\right) x^{4}+\ldots \tag{50}
\end{equation*}
$$

and expanding the right hand side gives

$$
\begin{equation*}
-c+\frac{3}{2} c x-\frac{5}{12} c x^{2}+\frac{7}{144} c x^{3}-\frac{1}{320} c x^{4} \pm \ldots \tag{51}
\end{equation*}
$$

Equating coefficients gives the system of equations

$$
\begin{aligned}
b_{0} & =-c \\
2 b_{2}+b_{1} & =\frac{3}{2} c \\
6 b_{3}+b_{2} & =-\frac{5}{12} c \\
12 b_{4}+b_{3} & =\frac{7}{144} c
\end{aligned}
$$

Now $b_{0}\left(r_{2}\right)$ is an arbitrary constant and $c=-b_{0}$. Notice that b_{1} can also be chosen arbitrarily. This is because it is the coefficient of $x^{r_{1}}=x^{1}=x$ in the series

$$
\begin{equation*}
x^{r_{2}} \sum_{k=0}^{\infty} b_{k} x^{k}=b_{0}+\underbrace{x^{r_{1}}\left(b_{1}+b_{2} x+b_{3} x^{2}+\ldots\right)}_{\text {form of } y_{1}(x)} . \tag{52}
\end{equation*}
$$

Consequently, modifying $b_{1}\left(r_{2}\right)$ changes subsequent coefficients $b_{k}\left(r_{2}\right)$ for $k>1$ so as to effectively add a multiple of $y_{1}(x)$ to $y_{2}(x)$. In effect, changing b_{1} just affects the choice of the arbitrary constant $a_{0}\left(r_{1}\right)$ that we already chose to be $a_{0}=1$. For convenience, we now choose $b_{0}=1$ and $b_{1}=0$. Then $b_{2}=-3 / 4$, $b_{3}=7 / 36, b_{4}=-35 / 1728, \ldots$ so the second solution is

$$
\begin{equation*}
y_{2}(x)=-y_{1}(x) \log x+\left[1-\frac{3}{4} x^{2}+\frac{7}{36} x^{3}-\frac{35}{1728} x^{4} \pm \ldots\right] \tag{53}
\end{equation*}
$$

Example: Case 3 (log term drops out)

Consider

$$
\begin{equation*}
L y \equiv x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0 \tag{54}
\end{equation*}
$$

with $p(x)=1$ and $q(x)=\left(x^{2}-\frac{1}{4}\right)$ and a regular singular point at $x=0$. The power series in y_{1} and y_{2} will converge for $|x|<\infty$ since p and q have convergent power series in this interval. The indicial equation is given by

$$
\begin{equation*}
r(r-1)+r-\frac{1}{4}=0 \tag{55}
\end{equation*}
$$

so $r_{1}=\frac{1}{2}$ and $r_{2}=-\frac{1}{2}$.
First solution: Substituting $y=x^{r} \sum_{k=0}^{\infty} a_{k} x^{k}$ into (54) results in

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left[(r+k)(r+k-1)+(r+k)-\frac{1}{4}\right] a_{k} x^{r+k}+\sum_{k=0}^{\infty} a_{k} x^{r+k+2}=0 \tag{56}
\end{equation*}
$$

or shifting indices in the last series

$$
\begin{equation*}
\left.\left(r^{2}-\frac{1}{4}\right) a_{0} x^{r}+\left[(r+1)^{2}-\frac{1}{4}\right] a_{1} x^{r+1}+\sum_{k=2}^{\infty}\left\{\left[\left(r+k^{2}\right)-\frac{1}{4}\right] a_{k}+a_{k-2}\right]\right\} x^{r+k}=0 \tag{57}
\end{equation*}
$$

Setting the coefficient of x^{r} to zero we recover the indicial equation. Setting the other coefficients to zero we find

$$
\begin{equation*}
\left[(r+1)^{2}-\frac{1}{4}\right] a_{1}=0 \tag{58}
\end{equation*}
$$

and the recurrence relation

$$
\begin{equation*}
\left[(r+k)^{2}-\frac{1}{4}\right] a_{k}=-a_{k-2}, \quad k \geq 2 \tag{59}
\end{equation*}
$$

For $r_{1}=\frac{1}{2}$ we then have

$$
\begin{equation*}
a_{k}=0, \quad k=1,3,5 \ldots \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{k}=-\frac{a_{k-2}}{(k+1) k}, \quad k=2,4,6, \ldots \tag{61}
\end{equation*}
$$

Then $a_{2}=-a_{0} / 3!, a_{4}=a_{0} / 5!, \ldots$ so letting $k=2 m$ in general

$$
\begin{equation*}
a_{2 m}=\frac{(-1)^{m} a_{0}}{(2 m+1)!}, \quad k=1,2,3 \ldots \tag{62}
\end{equation*}
$$

Choosing $a_{0}=1$, the first solution is

$$
\begin{equation*}
y_{1}(x)=x^{1 / 2} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m+1)!} x^{2 m} \tag{63}
\end{equation*}
$$

Second solution: For the second solution in general we require a solution of the form

$$
\begin{equation*}
y=c y_{1}(x) \log x+x^{-1 / 2} \sum_{k=0}^{\infty} b_{k} x^{k} . \tag{64}
\end{equation*}
$$

If the roots are of the form $r_{2}-r_{1}=N$ with $N \in \mathbb{Z}^{+}$then the \log term is generally required to enable the calculation of $b_{N}\left(r_{2}\right)$. However, in the present case, we see from (58) that the coefficient of x^{r+1} will vanish for $r_{2}=-1 / 2$ regardless of the value of b_{1} (where b_{1} replaces a_{1} since we are now using $r=r_{2}$). Hence, the \log term is unnecessary in y_{2} and $c=0$. Let's suppose we did not notice this ahead of time and attempted to substitute the general form (64) into (54). Then notice

$$
\begin{equation*}
y^{\prime}=\frac{c y_{1}}{x}+c y_{1}^{\prime} \log x+\frac{d}{d x}\left[x^{-1 / 2} \sum_{k=0}^{\infty} b_{k} x^{k}\right] \tag{65}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime \prime}=-\frac{c y_{1}}{x^{2}}+2 \frac{c y_{1}^{\prime}}{x}+c y_{1}^{\prime \prime} \log x+\frac{d^{2}}{d x^{2}}\left[x^{-1 / 2} \sum_{k=0}^{\infty} b_{k} x^{k}\right] \tag{66}
\end{equation*}
$$

We then obtain

$$
\begin{equation*}
c L\left[y_{1}\right] \log x+2 c x y_{1}^{\prime}+L\left[x^{-1 / 2} \sum_{k=0}^{\infty} b_{k} x^{k}\right]=0 \tag{67}
\end{equation*}
$$

Now we know $L\left[y_{1}\right]=0$ so this gives

$$
\begin{equation*}
L\left[x^{-1 / 2} \sum_{k=0}^{\infty} b_{k} x^{k}\right]=-2 c x y_{1}^{\prime} \tag{68}
\end{equation*}
$$

Expanding the left hand side (for convenience we may use (58) and (59) with b_{k} replacing a_{k} since we are using $r=r_{2}$) gives

$$
\begin{equation*}
0 \cdot b_{0} x^{-1 / 2}+0 \cdot b_{1} x^{1 / 2}+\left(2 b_{2}+b_{0}\right) x^{3 / 2}+\left(6 b_{3}+b_{1}\right) x^{5 / 2}+\ldots \tag{69}
\end{equation*}
$$

and expanding the right hand side gives

$$
\begin{equation*}
-c x^{1 / 2}+\frac{5}{6} c x^{5 / 2}-\frac{9}{120} c x^{9 / 2} \pm \ldots \tag{70}
\end{equation*}
$$

Equating coefficients give the system of equations

$$
\begin{aligned}
0 \cdot b_{1} & =-c \\
2 b_{2}+b_{0} & =0 \\
6 b_{3}+b_{1} & =\frac{5}{6} c \\
12 b_{4}+b_{2} & =0 \\
& \vdots
\end{aligned}
$$

So $b_{0}\left(r_{2}\right)$ and $b_{1}\left(r_{2}\right)$ are both arbitrary as expected and $c=0$. The other coefficients are then given by

$$
\begin{equation*}
b_{2 k}=\frac{(-1)^{k} b_{0}}{(2 k)!}, \quad b_{2 k+1}=\frac{(-1)^{k} b_{1}}{(2 k+1)!}, \quad k=1,2, \ldots \tag{71}
\end{equation*}
$$

Hence the second solution has the form

$$
\begin{equation*}
y_{2}(x)=x^{-1 / 2}\left[b_{0} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}+b_{1} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}\right] . \tag{72}
\end{equation*}
$$

Note that as expected, b_{1} just introduces a multiple of $y_{1}(x)$ so we may choose $b_{1}=0$. Setting the arbitrary constant $b_{0}=1$, the second solution finally becomes

$$
\begin{equation*}
y_{2}(x)=x^{-1 / 2} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k} \tag{73}
\end{equation*}
$$

