ACM95b Final Exam 2004

Problem 1 (4×6 points)

(a) 6 points

- (1) 1 point

Regular S-L

- (2) 1 point

Not a S-L problem since $y(0)=1$ makes the operator non-selfadjoint

- (3) 1 point

Singular S-L

- (4) 1 point

Periodic S-L

- (5) 1 point

Regular S-L

- (6) 1 point

Singular S-L

- (b) 6 points

$$
\begin{equation*}
0=\frac{1}{\mathrm{r}^{2}}\left(\mathrm{r}^{2} \mathrm{u}_{\mathrm{r}}\right)_{\mathrm{r}}+\frac{1}{\mathrm{r}^{2} \operatorname{Sin} \theta}\left(\operatorname{Sin} \theta \mathrm{u}_{\theta}\right)_{\theta}+\frac{1}{\mathrm{r}^{2} \operatorname{Sin}^{2} \theta} \mathrm{u}_{\phi \phi} \tag{1}
\end{equation*}
$$

Set $\mathrm{u}=\mathrm{R}(\mathrm{r}) \Xi(\theta) \Phi(\phi)$

$$
\begin{equation*}
\frac{1}{\operatorname{Sin} \theta} \frac{\left(\operatorname{Sin} \theta \Xi^{\prime}\right)^{\prime}}{\Xi}+\frac{1}{\operatorname{Sin}^{2} \theta} \frac{\Phi^{\prime \prime}}{\Phi}=-\frac{\left(\mathrm{r}^{2} \mathrm{R}^{\prime}\right)^{\prime}}{\mathrm{R}} \tag{2}
\end{equation*}
$$

So

$$
\begin{equation*}
\left(\mathrm{r}^{2} \mathrm{R}^{\prime}\right)^{\prime}+\lambda \mathrm{R}=0 \tag{3}
\end{equation*}
$$

This equation is of form (5).

- (c) 6 points

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\lambda y=0 \tag{4}
\end{equation*}
$$

Rewrite this as

$$
\begin{equation*}
y^{\prime \prime}-\frac{x}{1-x^{2}} y^{\prime}+\frac{\lambda}{1-x^{2}} y=0 \tag{5}
\end{equation*}
$$

After finding the right integration factor this equation will be of the form

$$
\begin{equation*}
\left(p y^{\prime}\right)^{\prime}+(q+\lambda r) y=0 \tag{6}
\end{equation*}
$$

Expanding this

$$
\begin{equation*}
y^{\prime \prime}+\frac{p^{\prime}}{p} y^{\prime}+\left(\frac{q+\lambda r}{p}\right) y=0 \tag{7}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{\mathrm{p}^{\prime}}{\mathrm{p}}=-\frac{\mathrm{x}}{1-\mathrm{x}^{2}} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{p}=\sqrt{1-\mathrm{x}^{2}} \tag{9}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\left(\sqrt{1-x^{2}} y^{\prime}\right)^{\prime}+\frac{\lambda}{\sqrt{1-x^{2}}} y=0 \tag{10}
\end{equation*}
$$

■ (d) 6 points

- (i) 2 points

The weight factor is

$$
\begin{equation*}
\mathrm{w}(\mathrm{x})=\frac{1}{\sqrt{1-\mathrm{x}^{2}}} \tag{11}
\end{equation*}
$$

and we are considering the interval $x \in[-1,1]$, so the orthogonality condition is

$$
\int_{-1}^{1} \mathrm{~T}_{\mathrm{n}}(\mathrm{x}) \mathrm{T}_{\mathrm{m}}(\mathrm{x}) \frac{1}{\sqrt{1-\mathrm{x}^{2}}} d \mathrm{x}=\begin{array}{rr}
0 & \mathrm{n} \neq \mathrm{m} \tag{12}\\
\mathrm{~N}_{\mathrm{n}} & \mathrm{n}=\mathrm{m}
\end{array}
$$

Where N_{n} is some non-zero number that in principle could be calculated.

- (ii) 2 points

By the class notes of $2 / 23 / 04$, this singular S-L problem is not guaranteed to have a complete set of eigenfunctions unless the eigenvalues are discrete (i.e. there is no continuous or residual spectrum). Since this is a singular S-L problem, it is possible that the eigenfunctions are complete but we don't know for certain.

- (iii) 2 points

No, completeness isn't guaranteed as explained in part (ii)

Problem 2 (6+4 points)

- (a) 6 points

$$
\begin{align*}
& \left(\mathrm{x}^{2} \mathrm{y}^{\prime}\right)^{\prime}+\lambda \mathrm{y}=0 \\
& \mathrm{y}(1)=\mathrm{y}(e)=0 \tag{13}
\end{align*}
$$

Following the hint, set $\mathrm{y}=x^{v}$

$$
\begin{equation*}
v(v+1)+\lambda=0 \tag{14}
\end{equation*}
$$

Following the hint set $4 \lambda-1=\mu^{2}$. This gives

$$
\begin{equation*}
v_{ \pm}=\frac{-1 \pm i \mu}{2} \tag{15}
\end{equation*}
$$

We check the Wronskian of these two solutions

$$
\left|\begin{array}{cc}
\mathrm{x}^{v_{+}} & \mathrm{x}^{v_{-}} \tag{16}\\
v_{+} \mathrm{X}^{v_{+}} & v_{-} \mathrm{x}^{v_{-}}
\end{array}\right|=\left(v_{-}-v_{+}\right) \mathrm{x}^{v_{-}+v_{+}}
$$

This is non-zero on $[1, e]$ provided that $\mu \neq 0$. In this case, the general solution is of the form

$$
\begin{equation*}
\mathrm{y}=\mathrm{A} \mathrm{x}^{v_{+}}+\mathrm{B} \mathrm{x}^{v_{-}} \tag{17}
\end{equation*}
$$

If $\mu=0$ (i.e. $\lambda=1 / 4$) then the we only have on linearly independent solution

$$
\begin{equation*}
\mathrm{x}^{-1 / 2} \tag{18}
\end{equation*}
$$

To find another we use reduction of order. Set

$$
\begin{equation*}
y(x)=x^{-1 / 2} z(x) \tag{19}
\end{equation*}
$$

Pluging into the ODE with $\lambda=1 / 4$ gives:

$$
\begin{equation*}
\left(\mathrm{x} \mathrm{z}^{\prime}\right)^{\prime}=0 \tag{20}
\end{equation*}
$$

So (3 points)

$$
\begin{equation*}
y=x^{-1 / 2}(A+B \ln x) \tag{21}
\end{equation*}
$$

Now let us try to fit the boundary conditions.
Case 1: $\lambda \neq 1 / 4$ (2 points)

$$
\begin{align*}
& 0=\mathrm{y}(1)=\mathrm{A}+\mathrm{B} \\
& 0=\mathrm{y}(e)=\mathrm{A} \boldsymbol{e}^{v_{+}}+\mathrm{B} \boldsymbol{e}^{v_{-}} \tag{22}
\end{align*}
$$

A homogeneous linear system has a non-trivial solutions iff its determinant is zero. So we require

$$
0=\left|\begin{array}{cc}
1 & 1 \tag{23}\\
\boldsymbol{e}^{v_{+}} & \boldsymbol{e}^{v_{-}}
\end{array}\right|=\boldsymbol{e}^{v_{-}}-\boldsymbol{e}^{v_{+}}
$$

This is satisfied if

$$
\begin{equation*}
v_{+}=v_{-}+2 \pi \mathrm{n} i \tag{24}
\end{equation*}
$$

for integer n . In terms of μ this requirement is

$$
\begin{equation*}
\mu=2 \pi \mathrm{n} \tag{25}
\end{equation*}
$$

The eigenfunctions are of the form

$$
\begin{equation*}
\mathrm{y}=\mathrm{A}\left(\mathrm{x}^{\nu_{+}}-\mathrm{x}^{\nu_{-}}\right)=\mathrm{Ax}^{-1 / 2}\left(\mathrm{x}^{\pi \mathrm{n} i}-\mathrm{x}^{-\pi \mathrm{n} i}\right) \tag{26}
\end{equation*}
$$

Which, using the hint, can be written

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}}=\mathrm{Ax}^{-1 / 2}\left(e^{i \pi \mathrm{n} \ln \mathrm{x}}-e^{-i \pi \mathrm{n} \ln \mathrm{x}}\right)=\alpha \mathrm{x}^{-1 / 2} \operatorname{Sin}(\pi \mathrm{n} \ln \mathrm{x}) \tag{27}
\end{equation*}
$$

Case 2: $\lambda=1 / 4$ (1 point)

$$
\begin{align*}
& 0=\mathrm{y}(1)=\mathrm{A} \\
& 0=\mathrm{y}(e)=e^{-1 / 2}(\mathrm{~A}+\mathrm{B})
\end{align*}
$$

This gives $\mathrm{A}=\mathrm{B}=0$. So $\lambda=1 / 4$ is not an eigenvalue
We conclude that the eigenvalues and eigenfunctions are

$$
\begin{align*}
& \lambda_{\mathrm{n}}=\frac{1}{4}\left(1+4 \pi^{2} \mathrm{n}^{2}\right) \\
& \mathrm{y}_{\mathrm{n}}=\mathrm{x}^{-1 / 2} \operatorname{Sin}(\pi \mathrm{n} \ln \mathrm{x}) \tag{29}\\
& \mathrm{n}=1,2,3, \ldots
\end{align*}
$$

■ (b) 4 points

- (i) 1 point

The eigenvalues are

$$
\begin{equation*}
\lambda_{\mathrm{n}}=\frac{1}{4}\left(1+4 \pi^{2} \mathrm{n}^{2}\right) \tag{30}
\end{equation*}
$$

for all positive integer n. Hence there are infinitely many of them. The spacing between eigenvalues is given by

$$
\begin{equation*}
\lambda_{\mathrm{n}}-\lambda_{\mathrm{m}}=\pi^{2}\left(\mathrm{n}^{2}-\mathrm{m}^{2}\right) \tag{31}
\end{equation*}
$$

This spacing doesn't approach 0 , so the eigenvalues have no accumulation point.

- (ii) 1 point

As we found in part (a) for each n, there is exactly one eigenfunction up to a multiplicative constant

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}} \mathrm{x}^{-1 / 2} \operatorname{Sin}(\pi \mathrm{n} \ln \mathrm{x}) \tag{32}
\end{equation*}
$$

- (iii) 1 point

$$
\begin{equation*}
\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right)=\int_{1}^{e} \mathrm{y}_{\mathrm{n}} \mathrm{y}_{\mathrm{m}} d \mathrm{x}=\int_{1}^{e} \mathrm{x}^{-1} \operatorname{Sin}(\pi \mathrm{n} \ln \mathrm{x}) \operatorname{Sin}(\pi \mathrm{m} \ln \mathrm{x}) d \mathrm{x} \tag{33}
\end{equation*}
$$

Make the change of integration variable

$$
\begin{equation*}
\mathrm{z}=\ln \mathrm{x} \tag{34}
\end{equation*}
$$

We find

$$
\begin{equation*}
\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right)=\int_{0}^{1} \operatorname{Sin}(\pi \mathrm{nz}) \operatorname{Sin}(\pi \mathrm{mz}) d \mathrm{z} \tag{35}
\end{equation*}
$$

By what we know from class and homework, these sine functions are orthogonal unless $n=m$

$$
\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right)=\begin{array}{cc}
0 & \mathrm{n} \neq \mathrm{m} \tag{36}\\
1 / 2 & \mathrm{n}=\mathrm{m}
\end{array}
$$

- (iv) 1 point

The eigenfunctions will be complete in the space of square integrable functions if for any such function $f(x)$ we have

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{A}_{\mathrm{n}} \mathrm{x}^{-1 / 2} \operatorname{Sin}(\pi \mathrm{n} \ln \mathrm{x}) \tag{37}
\end{equation*}
$$

Let's change variables to $\mathrm{z}=\ln \mathrm{x}$

$$
\mathrm{h}(\mathrm{z})=\boldsymbol{e}^{\mathrm{z} / 2} \mathrm{f}\left(\boldsymbol{e}^{\mathrm{z}}\right)=\sum_{\mathrm{n}=1}^{\infty} \mathrm{A}_{\mathrm{n}} \operatorname{Sin}(\pi \mathrm{nz})
$$

We know that the sine function on the right side are complete in the space of square integrable functions on [0,1], so all that's left is to verify that $h(z)$ is square integrable on $[0,1]$

$$
\begin{equation*}
\int_{0}^{1} \mathrm{~h}^{2}(\mathrm{z}) d \mathrm{z}=\int_{0}^{1} e^{\mathrm{z}} \mathrm{f}^{2}\left(e^{\mathrm{z}}\right) d \mathrm{z}=\int_{1}^{e} \mathrm{f}^{2}(\mathrm{x}) d \mathrm{x} \tag{39}
\end{equation*}
$$

Since we know that $\mathrm{f}(\mathrm{x})$ is square integrable on $[1, e]$ this last integral converges and hence $\mathrm{h}(\mathrm{z})$ is square integrable on $[0,1]$. So we conclude that $\operatorname{since} \operatorname{Sin}(\pi \mathrm{nz})$ are complete on $[0,1], y_{n}$ are complete on $[1, e]$.

Problem 3 (4×6 points)

(a) 6 points

$$
\left.\begin{array}{l}
(\mathrm{x} \mathrm{G}
\end{array}\right)^{\prime}=\delta(\mathrm{x}-\mathrm{t}) \mathrm{t}
$$

Method 1: shortcut

It is acceptable for students to quote a formula from a class handout. They should find $y_{1}=1$ and $y_{2}=\ln \mathrm{x}$.

Method 2: the long way

G will be of the form

$$
\mathrm{G}=\begin{array}{ll}
\mathrm{A}+\mathrm{B} \ln \mathrm{x} & 0 \leq \mathrm{x} \leq \mathrm{t} \tag{41}\\
\mathrm{C}+\mathrm{D} \ln \mathrm{x} & \mathrm{t} \leq \mathrm{x} \leq 1
\end{array}
$$

The boundary conditions give

$$
G=\begin{array}{cc}
A & 0 \leq x \leq t \tag{42}\\
D \ln x & t \leq x \leq 1
\end{array}
$$

Continuity at $x=t$ requires $A=D \ln t$. The jump condition is found by integrating the ODE from $t-\epsilon$ to $t+\epsilon$ and letting $\epsilon \rightarrow 0$

$$
\begin{equation*}
\mathrm{tG}^{\prime}\left(\mathrm{t}^{+}\right)-\mathrm{tG}^{\prime}\left(\mathrm{t}^{-}\right)=\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathrm{t}-\epsilon}^{\mathrm{t}+\epsilon}\left(\mathrm{x} \mathrm{G}^{\prime}\right)^{\prime} d \mathrm{x}=\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathrm{t}-\epsilon}^{\mathrm{t}+\epsilon} \delta(\mathrm{x}-\mathrm{t}) d \mathrm{x}=1 \tag{43}
\end{equation*}
$$

So we require

$$
\begin{equation*}
\mathrm{D} / \mathrm{t}-0=1 / \mathrm{t} \tag{44}
\end{equation*}
$$

Using either method, we conclude (5 points)

$$
\mathrm{G}=\begin{array}{ll}
\ln \mathrm{t} & 0 \leq \mathrm{x} \leq \mathrm{t} \tag{45}\\
\ln \mathrm{x} & \mathrm{t} \leq \mathrm{x} \leq 1
\end{array}
$$

We suspect that

$$
\begin{equation*}
\mathrm{y}(\mathrm{x})=\int_{0}^{1} \mathrm{G}(\mathrm{x}, \mathrm{t}) \mathrm{f}(\mathrm{t}) d \mathrm{t} \tag{46}
\end{equation*}
$$

will solve

$$
\begin{align*}
& \left.\left(x y^{\prime}\right)\right)^{\prime}=\mathrm{f}(\mathrm{x}) \\
& \mathrm{y}(0)=\text { finite } \\
& \mathrm{y}(1)=0
\end{align*}
$$

We verify as follows (1 point)
Mehtod a:

$$
\begin{align*}
& \mathrm{y}(0)=\int_{0}^{1} \mathrm{G}(0, \mathrm{t}) \mathrm{f}(\mathrm{t}) d \mathrm{t}=\ln \mathrm{t} \int_{0}^{1} \mathrm{f}(\mathrm{t}) d \mathrm{t}=\text { finite } \\
& \mathrm{y}(1)=\int_{0}^{1} \mathrm{G}(1, \mathrm{t}) \mathrm{f}(\mathrm{t}) d \mathrm{t}=\int_{0}^{1} 0 \mathrm{f}(\mathrm{t}) d \mathrm{t}=0 \tag{48}\\
& \left(\mathrm{xy} \mathrm{'}^{\prime}=\int_{0}^{1}\left(\mathrm{x}_{\mathrm{x}}(\mathrm{x}, \mathrm{t})\right)_{\mathrm{x}} \mathrm{f}(\mathrm{t}) d \mathrm{t}=\int_{0}^{1} \delta(\mathrm{x}-\mathrm{t}) \mathrm{f}(\mathrm{t}) d \mathrm{t}=\mathrm{f}(\mathrm{x})\right.
\end{align*}
$$

Method b:

$$
\left.\begin{array}{l}
\mathrm{y}=\ln \mathrm{x} \int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) d \mathrm{t}+\int_{\mathrm{x}}^{1} \ln \mathrm{ff}(\mathrm{t}) d \mathrm{t} \\
\mathrm{y}(0)=\lim _{\mathrm{x} \rightarrow 0}\left(\ln \mathrm{x} \int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) d \mathrm{t}+\int_{\mathrm{x}}^{1} \ln \mathrm{tf}(\mathrm{t}) d \mathrm{t}\right)= \\
\lim _{\mathrm{x} \rightarrow 0}\left(\frac{\mathrm{xf}(\mathrm{x})}{-(\ln \mathrm{x})^{2}}\right)+\int_{0}^{1} \ln \mathrm{tf}(\mathrm{t}) d \mathrm{t}<\infty \text { only if } \mathrm{f}(\mathrm{x}) \text { vanishes rapidly enough near } \mathrm{x}=0 \tag{49}\\
\mathrm{y}(1)=\ln 1 \int_{0}^{1} \mathrm{f}(\mathrm{t}) d \mathrm{t}+\int_{1}^{1} \ln \mathrm{tf}(\mathrm{t}) d \mathrm{t}=0 \\
(\mathrm{x} \mathrm{y}
\end{array} \mathrm{y}^{\prime}\right)^{\prime}=\mathrm{x}\left(\frac{1}{\mathrm{x}} \int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) d \mathrm{t}+\mathrm{x} \ln \mathrm{x} \mathrm{f}(\mathrm{x})-\mathrm{x} \ln \mathrm{x} f(\mathrm{x})\right)^{\prime}=\left(\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) d \mathrm{t}\right)^{\prime}=\mathrm{f}(\mathrm{x}) \quad .
$$

- (b) 6 points

$$
\begin{align*}
& \mathrm{f}(\mathrm{x})=1 \tag{50}\\
& \mathrm{y}(\mathrm{x})=\int_{0}^{1} \mathrm{G}(\mathrm{x}, \mathrm{t}) d \mathrm{t}=\mathrm{y}(\mathrm{x})=\ln \mathrm{x} \int_{0}^{\mathrm{x}} d \mathrm{t}+\int_{\mathrm{x}}^{1} \ln \mathrm{t} d \mathrm{t}=(\mathrm{x} \ln \mathrm{x})+(-1-\mathrm{x} \ln \mathrm{x}+\mathrm{x})=\mathrm{x}-1 \tag{51}
\end{align*}
$$

(c) 6 points

Method 1: shortcut (5 points)

As in 3 a , students may quote a formula with $y_{1}=\operatorname{Cos} \mathrm{x}$ and $y_{2}=\operatorname{Sin}(\mathrm{x}-1), \mathrm{W}\left(y_{1}, y_{2}\right)=\operatorname{Cos}(1)$, and $\mathrm{p}(\mathrm{x})=1$
Method 2: the long way (5 points)

$$
\begin{align*}
& \mathrm{G}^{\prime \prime}+\mathrm{G}=\delta(\mathrm{x}-\mathrm{t}) \\
& \mathrm{G}^{\prime}(0)=\mathrm{G}(1)=0 \tag{52}
\end{align*}
$$

G will be of the form

$$
G=\begin{array}{ll}
A \operatorname{Sin} x+B \operatorname{Cos} x & 0 \leq x \leq t \tag{53}\\
C \operatorname{Sin} x+D \operatorname{Cos} x & t \leq x \leq 1
\end{array}
$$

The boundary conditions give

$$
G=\begin{array}{cl}
B \operatorname{Cos} x & 0 \leq x \leq t \tag{54}\\
E \operatorname{Sin}(x-1) & t \leq x \leq 1
\end{array}
$$

Continuity at $x=t$ requires

$$
\mathrm{G}=\begin{array}{ll}
\mathrm{F} \operatorname{Sin}(\mathrm{t}-1) \operatorname{Cos} \mathrm{x} & 0 \leq \mathrm{x} \leq \mathrm{t} \tag{55}\\
\mathrm{~F} \operatorname{Sin}(\mathrm{x}-1) \operatorname{Cos} \mathrm{t} & \mathrm{t} \leq \mathrm{x} \leq 1
\end{array}
$$

The jump condition requires

$$
\begin{equation*}
F \operatorname{Cos}(t-1) \operatorname{Cos} t+F \operatorname{Sin}(t-1) \operatorname{Sin} t=1 \tag{56}
\end{equation*}
$$

So we have

$$
G=\begin{array}{ll}
\frac{\operatorname{Sin}(t-1) \operatorname{Cos} x}{\cos 1} & 0 \leq x \leq t \tag{57}\\
\frac{\operatorname{Sin}(x-1) \cos t}{\operatorname{Cos} 1} & t \leq x \leq 1
\end{array}
$$

We suspect that the solution to

$$
\begin{align*}
& y^{\prime \prime}+\mathrm{y}=\mathrm{f}(\mathrm{x}) \\
& \mathrm{y}^{\prime}(0)=\mathrm{y}(1)=0 \tag{58}
\end{align*}
$$

will be

$$
\begin{equation*}
\mathrm{y}(\mathrm{x})=\int_{0}^{1} \mathrm{G}(\mathrm{x}, \mathrm{t}) \mathrm{f}(\mathrm{t}) d \mathrm{t} \tag{59}
\end{equation*}
$$

Regardless of the method used, we verify as follows (1 point)

$$
\begin{align*}
& \mathrm{y}^{\prime}(0)=\int_{0}^{1} \mathrm{G}_{\mathrm{x}}(0, \mathrm{t}) \mathrm{f}(\mathrm{t}) d \mathrm{t}=\int_{0}^{1}\left(\mathrm{G}_{\mathrm{x}}(\mathrm{x}, \mathrm{t})\right)_{\mathrm{x}=0} \mathrm{f}(\mathrm{t}) d \mathrm{t}=\int_{0}^{1} 0 \mathrm{f}(\mathrm{t}) d \mathrm{t}=0 \\
& \mathrm{y}(1)=\int_{0}^{1} \mathrm{G}(1, \mathrm{t}) \mathrm{f}(\mathrm{t}) d \mathrm{t}=\int_{0}^{1} 0 \mathrm{f}(\mathrm{t}) d \mathrm{t}=0 \tag{60}\\
& \mathrm{y}^{\prime \prime}+\mathrm{y}=\int_{0}^{1}\left(\mathrm{G}_{\mathrm{xx}}(\mathrm{x}, \mathrm{t})+\mathrm{G}(\mathrm{x}, \mathrm{t})\right) \mathrm{f}(\mathrm{t}) d \mathrm{t}=\int_{0}^{1} \delta(\mathrm{x}-\mathrm{t}) \mathrm{f}(\mathrm{t}) d \mathrm{t}=\mathrm{f}(\mathrm{x})
\end{align*}
$$

(d) 6points

When the right boundary is $x=\pi / 2, \lambda=1$ is an eigenvalue. That is

$$
\begin{align*}
& L y=y "+y=0 \\
& y^{\prime}(0)=y(\pi / 2)=0 \tag{61}
\end{align*}
$$

has the non-trivial solution

$$
\begin{equation*}
y_{1}=\operatorname{Cos} x \tag{62}
\end{equation*}
$$

So the problem

$$
\begin{align*}
& y^{\prime \prime}+y=f(x) \tag{63}\\
& y^{\prime}(0)=y(\pi / 2)=0
\end{align*}
$$

doesn't have a solution for arbitrary $f(x)$. It will have a solution only if $f(x)$ is orthogonal to the eigenfunction. We see this as follows. This is regular S-L problem and L is self adjoint. So if y solves the inhomogeneous problem and y_{1} is the eigenfunction, then we have

$$
\begin{equation*}
\left(y_{1}, f\right)=\left(y_{1}, L y\right)=\left(L y_{1}, y\right)=(0, y)=0 \tag{64}
\end{equation*}
$$

So a solution to the inhomogeneous problem exists only if f is orthogonal to the eigenfunction y_{1} i.e.

$$
\begin{equation*}
\int_{0}^{1} \operatorname{Cos}(\mathrm{x}) \mathrm{f}(\mathrm{x}) d \mathrm{x}=0 \tag{65}
\end{equation*}
$$

Problem 4 ($\mathbf{4 \times 6}$ points)

$$
\begin{align*}
& \mathrm{u}_{\mathrm{t}}=\kappa \mathrm{u}_{\mathrm{xx}}-\sigma \mathrm{u}+\mathrm{f}(\mathrm{x}) \\
& \mathrm{u}(\mathrm{x}, 0)=0 \tag{66}
\end{align*}
$$

(a) 6 points

$$
\begin{align*}
& \mathrm{u}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{A}_{\mathrm{n}}(\mathrm{t}) e^{i \mathrm{nx}} \\
& \mathrm{f}(\mathrm{x})=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{f}_{\mathrm{n}} e^{i \mathrm{nx}} \tag{67}
\end{align*}
$$

By orthogonality we have

$$
\begin{align*}
& \mathrm{A}_{\mathrm{n}}(\mathrm{t})=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{u}(\mathrm{x}, \mathrm{t}) e^{-i \mathrm{nx}} d \mathrm{x} \\
& \mathrm{f}_{\mathrm{n}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{f}(\mathrm{x}) e^{-i \mathrm{n} \mathrm{x}} d \mathrm{x} \tag{68}
\end{align*}
$$

Method 1: The "right" way
Multiply the PDE by the exponential and integrate on $[0,2 \pi]$

$$
\begin{equation*}
\int_{0}^{2 \pi} \mathrm{u}_{\mathrm{t}} e^{-i \mathrm{nx}} d \mathrm{x}=\kappa \int_{0}^{2 \pi} \mathrm{u}_{\mathrm{xx}} e^{-i \mathrm{nx}} d \mathrm{x}-\sigma \int_{0}^{2 \pi} \mathrm{u} e^{-i \mathrm{nx}} d \mathrm{x}+\int_{0}^{2 \pi} \mathrm{f} e^{-i \mathrm{nx}} d \mathrm{x} \tag{69}
\end{equation*}
$$

Most of these integrals are trivial to evaluate just using the definition of the Fourier coefficients

$$
\begin{equation*}
\mathrm{A}_{\mathrm{n}}^{\prime}(\mathrm{t})=\kappa \frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{u}_{\mathrm{xx}} e^{-i \mathrm{nx}} d \mathrm{x}-\sigma \mathrm{A}_{\mathrm{n}}(\mathrm{t})+\mathrm{f}_{\mathrm{n}} \tag{70}
\end{equation*}
$$

This last integral can be found by applying integration by parts twice

$$
\begin{align*}
& \int_{0}^{2 \pi} \mathrm{u}_{\mathrm{xx}} e^{-i \mathrm{nx}} d \mathrm{x}= \\
& \quad\left(e^{-i \mathrm{nx}} \mathrm{u}_{\mathrm{x}}+i \mathrm{n} e^{-i \mathrm{nx}} \mathrm{u}\right)_{\mathrm{x}=2 \pi}-\left(e^{-i \mathrm{nx}} \mathrm{u}_{\mathrm{x}}+i \mathrm{n} e^{-i \mathrm{nx}} \mathrm{u}\right)_{\mathrm{x}=0}-\mathrm{n}^{2} \int_{0}^{2 \pi} e^{-i \mathrm{nx}} \mathrm{u} d \mathrm{x}=-\mathrm{n}^{2} 2 \pi \mathrm{~A}_{\mathrm{n}}(\mathrm{t}) \tag{71}
\end{align*}
$$

So the ODE for A is

$$
\begin{equation*}
\mathrm{A}_{\mathrm{n}}^{\prime}(\mathrm{t})=-\left(\mathrm{n}^{2} \kappa+\sigma\right) \mathrm{A}_{\mathrm{n}}(\mathrm{t})+\mathrm{f}_{\mathrm{n}} \tag{72}
\end{equation*}
$$

Method 2: The "wrong" way (at most one point should be taken off for solving the problem this way)
Plug the expressions for u and f into the PDE

$$
\begin{equation*}
\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{A}_{\mathrm{n}}{ }^{\prime}(\mathrm{t}) \boldsymbol{e}^{i \mathrm{nx}}=-\kappa \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{n}^{2} \mathrm{~A}_{\mathrm{n}}(\mathrm{t}) \boldsymbol{e}^{i \mathrm{nx}}-\sigma \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{A}_{\mathrm{n}}(\mathrm{t}) \boldsymbol{e}^{i \mathrm{nx}}+\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{f}_{\mathrm{n}} e^{i \mathrm{nx}} \tag{73}
\end{equation*}
$$

By orthogonality we have

$$
\begin{equation*}
\mathrm{A}_{\mathrm{n}}^{\prime}(\mathrm{t})=-\left(\mathrm{n}^{2} \kappa+\sigma\right) \mathrm{A}_{\mathrm{n}}(\mathrm{t})+\mathrm{f}_{\mathrm{n}} \tag{74}
\end{equation*}
$$

Regardless of which method we use, the initial condition is found by setting $t=0$ in the expression for u

$$
0=\mathrm{u}(\mathrm{x}, 0)=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{A}_{\mathrm{n}}(0) e^{i \mathrm{nx}}
$$

And then using orthogonality to conclude

$$
\begin{equation*}
\mathrm{A}_{\mathrm{n}}(0)=0 \tag{76}
\end{equation*}
$$

(b) 6 points

The initial value problem is

$$
\begin{align*}
& \mathrm{A}_{\mathrm{n}}^{\prime}(\mathrm{t})=-\left(\mathrm{n}^{2} \kappa+\sigma\right) \mathrm{A}_{\mathrm{n}}(\mathrm{t})+\mathrm{f}_{\mathrm{n}} \\
& \mathrm{~A}_{\mathrm{n}}(0)=0 \tag{77}
\end{align*}
$$

Using an integrating factor, Green's functions, variation of parameters, the method of undetermined coefficients, Laplace transforms, or simply applying the general solution formula gives

$$
\begin{equation*}
\mathrm{A}_{\mathrm{n}}(\mathrm{t})=\frac{\mathrm{f}_{\mathrm{n}}}{\mathrm{n}^{2} \kappa+\sigma}\left(1-e^{-\left(\mathrm{n}^{2} \kappa+\sigma\right) \mathrm{t}}\right) \tag{78}
\end{equation*}
$$

- (c) 6 points

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\operatorname{Cos}^{2} \mathrm{x}=\frac{1}{2}+\frac{1}{2} \operatorname{Cos}(2 \mathrm{x})=\frac{1}{4} e^{-2 i \mathrm{x}}+\frac{1}{2}+\frac{1}{4} e^{2 i \mathrm{x}} \tag{79}
\end{equation*}
$$

This means we have only three non-zero f_{n}

$$
\begin{align*}
& \mathrm{f}_{-2}=1 / 4 \\
& \mathrm{f}_{0}=1 / 2 \tag{80}\\
& \mathrm{f}_{2}=1 / 4
\end{align*}
$$

According to our solution formula in parts (a) and (b), we have

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{t})=\frac{1 / 4}{4 \kappa+\sigma}\left(1-e^{-(4 \kappa+\sigma) \mathrm{t}}\right) \boldsymbol{e}^{-2 i \mathrm{n} \mathrm{x}}+\frac{1}{2 \sigma}\left(1-\boldsymbol{e}^{-\sigma \mathrm{t}}\right)+\frac{1 / 4}{4 \kappa+\sigma}\left(1-\boldsymbol{e}^{-(4 \kappa+\sigma) \mathrm{t}}\right) \boldsymbol{e}^{2 i \mathrm{x}} \tag{81}
\end{equation*}
$$

This can be simplified

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{t})=\frac{1 / 2}{4 \kappa+\sigma}\left(1-e^{-(4 \kappa+\sigma) \mathrm{t}}\right) \operatorname{Cos}(2 \mathrm{nx})+\frac{1}{2 \sigma}\left(1-e^{-\sigma \mathrm{t}}\right) \tag{82}
\end{equation*}
$$

■ (d) 6 points

When $\sigma \rightarrow 0$ the coefficient function $A_{0}(t)$ will have a removable singularity

$$
\begin{equation*}
\mathrm{A}_{0}(\mathrm{t})=\frac{\mathrm{f}_{0}}{\sigma}\left(1-e^{-\sigma \mathrm{t}}\right) \tag{83}
\end{equation*}
$$

Method 1

Going back to part (b) and setting $\sigma=0$ gives

$$
\begin{align*}
& \mathrm{A}_{\mathrm{n}}{ }^{\prime}(\mathrm{t})=-\mathrm{n}^{2} \kappa \mathrm{~A}_{\mathrm{n}}(\mathrm{t})+\mathrm{f}_{\mathrm{n}} \tag{84}\\
& \mathrm{~A}_{\mathrm{n}}(0)=0
\end{align*}
$$

The solutions to this are

$$
\begin{equation*}
A_{n}(t)=\frac{f_{n}}{n^{2} \kappa}\left(1-e^{-n^{2} \kappa t}\right) \quad n \neq 0 \tag{85}
\end{equation*}
$$

So for the particular case of part (c) we find

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{t})=\frac{1}{8 \kappa}\left(1-e^{-4 \kappa \mathrm{t}}\right) \operatorname{Cos}(2 \mathrm{nx})+\frac{\mathrm{t}}{2} \tag{86}
\end{equation*}
$$

Method 2

We might instead just calculate the limit of our solution from part (b) as $\sigma \rightarrow 0$ for fixed t .

$$
\begin{align*}
& \lim _{\sigma \rightarrow 0} \mathrm{~A}_{\mathrm{n}>0}=\lim _{\sigma \rightarrow 0}\left(\frac{\mathrm{f}_{\mathrm{n}}}{\mathrm{n}^{2} \kappa+\sigma}\left(1-e^{-\left(\mathrm{n}^{2} \kappa+\sigma\right) \mathrm{t}}\right)\right)=\frac{\mathrm{f}_{\mathrm{n}}}{\mathrm{n}^{2} \kappa}\left(1-e^{-\mathrm{n}^{2} \kappa \mathrm{t}}\right) \tag{87}\\
& \lim _{\sigma \rightarrow 0} \mathrm{~A}_{0}=\lim _{\sigma \rightarrow 0}\left(\frac{\mathrm{f}_{0}}{\sigma}\left(1-e^{-\sigma \mathrm{t}}\right)\right)^{\text {L' Hopital }^{=}} \lim _{\sigma \rightarrow 0}\left(\mathrm{f}_{0} \mathrm{t} \boldsymbol{e}^{-\sigma \mathrm{t}}\right)=\mathrm{f}_{0} \mathrm{t}
\end{align*}
$$

In the specific case of part (c) we'd have

$$
\begin{align*}
& \lim _{\sigma \rightarrow 0}\left(\frac{1 / 2}{4 \kappa+\sigma}\left(1-e^{-(4 \kappa+\sigma) \mathrm{t}}\right) \operatorname{Cos}(2 \mathrm{nx})\right)=\frac{1}{8 \kappa}\left(1-e^{-4 \kappa t}\right) \operatorname{Cos}(2 \mathrm{nx}) \tag{88}\\
& \lim _{\sigma \rightarrow 0} \mathrm{~A}_{0}=\frac{\mathrm{t}}{2}
\end{align*}
$$

Regardless of method, notice that with $\sigma=0$ in both the general and special case there is a linear growth term (unless $f_{0}=0$). Since $\sigma=0$ there is no dissipation of heat to your finger, so the temperature of the ring will increase without bound as time progresses.

Note(do not grade this part): examination of total heat content.
The total amount of heat in the ring is proportional to

$$
\begin{equation*}
\mathrm{H}(\mathrm{t})=\int_{0}^{2 \pi} \mathrm{u}(\mathrm{x}, \mathrm{t}) d \mathrm{x} \tag{89}
\end{equation*}
$$

By integrating the PDE and initial condition we find

$$
\begin{align*}
& \mathrm{H}^{\prime}(\mathrm{t})=-\sigma \mathrm{H}(\mathrm{t})+\int_{0}^{2 \pi} \mathrm{f}(\mathrm{x}) d \mathrm{x} \tag{90}\\
& \mathrm{H}(0)=0
\end{align*}
$$

For $\sigma>0$ the solution to this is

$$
\begin{equation*}
\mathrm{H}(\mathrm{t})=\frac{1-e^{-\sigma \mathrm{t}}}{\sigma} \int_{0}^{2 \pi} \mathrm{f}(\mathrm{x}) d \mathrm{x} \tag{91}
\end{equation*}
$$

This remains bounded for all time, and as $t \rightarrow \infty$ an equilibrium between heating and dissipation is reached

$$
\begin{equation*}
\mathrm{H}_{\mathrm{eq}}=\frac{1}{\sigma} \int_{0}^{2 \pi} \mathrm{f}(\mathrm{x}) d \mathrm{x} \tag{92}
\end{equation*}
$$

For $\sigma=0$, the solution is

$$
\begin{equation*}
\mathrm{H}(\mathrm{t})=\mathrm{t} \int_{0}^{2 \pi} \mathrm{f}(\mathrm{x}) d \mathrm{x}>0 \text { since } \mathrm{f}(\mathrm{x})>0 \text { describes a heat source not a sink. } \tag{93}
\end{equation*}
$$

And the total heat becomes unbounded due to lack of heat dissipation.

Problem 5 (6+5+5 points)

$$
\begin{align*}
& \mathrm{T}_{\mathrm{t}}=\kappa \mathrm{T}_{\mathrm{zz}} \\
& \mathrm{~T}(0, \mathrm{t})=\Delta \mathrm{T} \operatorname{Sin}\left(\omega_{0} \mathrm{t}\right) \tag{94}\\
& \mathrm{T}(\infty, \mathrm{t})=0
\end{align*}
$$

(a) 6 points

By definition

$$
\begin{equation*}
\hat{\mathrm{T}}(\mathrm{x}, \mathrm{f})=\int_{-\infty}^{\infty} \mathrm{T}(\mathrm{z}, \mathrm{t}) e^{-2 \pi i \mathrm{ft}} d \mathrm{t} \tag{95}
\end{equation*}
$$

Transforming the right side of the equation gives

$$
\begin{equation*}
\kappa \int_{-\infty}^{\infty} \mathrm{T}_{\mathrm{zz}}(\mathrm{z}, \mathrm{t}) e^{-2 \pi i \mathrm{ft}} d \mathrm{t}=\kappa \hat{\mathrm{T}}_{\mathrm{zz}} \tag{96}
\end{equation*}
$$

Transforming the left side using integration by parts

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{T}_{\mathrm{t}}(\mathrm{z}, \mathrm{t}) e^{-2 \pi i \mathrm{ft}} d \mathrm{t}=\left(e^{-2 \pi i \mathrm{ft}} \mathrm{~T}\right)_{\mathrm{t}=\infty}-\left(e^{-2 \pi i \mathrm{ft}} \mathrm{~T}\right)_{\mathrm{t}=-\infty}+2 \pi i \mathrm{f} \int_{-\infty}^{\infty} \mathrm{T}(\mathrm{z}, \mathrm{t}) e^{-2 \pi i \mathrm{ft}} d \mathrm{t} \tag{97}
\end{equation*}
$$

The boundary terms vanish if we assume that T vanishes at $\mathrm{t}= \pm \infty$. So the transformed equation is

$$
\begin{equation*}
2 \pi i \mathrm{f} \hat{\mathrm{~T}}=\kappa \hat{\mathrm{T}}_{\mathrm{zz}} \tag{98}
\end{equation*}
$$

Where the left side comes from the formula for the transform of a derivative. Transforming the right boundary condition gives

$$
\begin{equation*}
\hat{\mathrm{T}}(\infty, \mathrm{f})=0 \tag{99}
\end{equation*}
$$

Recall the delta representation

$$
\delta(f-a)=\int_{-\infty}^{\infty} e^{-2 \pi \dot{i}(f-a) t} d t
$$

Transforming the left boundary condition gives

$$
\begin{align*}
& \hat{\mathrm{T}}(0, \mathrm{f})=\Delta \mathrm{T} \int_{-\infty}^{\infty} \operatorname{Sin}\left(\omega_{0} \mathrm{t}\right) e^{-2 \pi i \mathrm{ft}} d \mathrm{t}= \\
& \qquad \frac{\Delta \mathrm{T}}{2 i} \int_{-\infty}^{\infty}\left(e^{i \omega_{0} \mathrm{t}}-e^{-i \omega_{0} \mathrm{t}}\right) e^{-2 \pi i \mathrm{ft}} d \mathrm{t}=\frac{\Delta \mathrm{T}}{2 i}\left(\delta\left(\mathrm{f}-\frac{\omega_{0}}{2 \pi}\right)-\delta\left(\mathrm{f}+\frac{\omega_{0}}{2 \pi}\right)\right) \tag{100}
\end{align*}
$$

■ (b) 5 points

$$
\begin{align*}
& 2 \pi i \mathrm{f} \hat{\mathrm{~T}}=\kappa \hat{\mathrm{T}}_{\mathrm{zz}} \\
& \hat{\mathrm{~T}}(\infty, \mathrm{f})=0 \tag{101}\\
& \hat{\mathrm{~T}}(0, \mathrm{f})=\frac{\Delta \mathrm{T}}{2 i}\left(\delta\left(\mathrm{f}-\frac{\omega_{0}}{2 \pi}\right)-\delta\left(\mathrm{f}+\frac{\omega_{0}}{2 \pi}\right)\right)
\end{align*}
$$

The equation has constant coefficients, so we know it has solutions of the form

$$
\begin{equation*}
e^{\mathrm{rz}} \tag{102}
\end{equation*}
$$

We plug this in and solve for r

$$
\mathrm{r}=\begin{array}{ll}
\pm\left(\frac{1+i}{\sqrt{2}}\right) \sqrt{\frac{2 \pi \mathrm{f}}{\kappa}} & \mathrm{f}>0 \\
\pm\left(\frac{1-i}{\sqrt{2}}\right) \sqrt{\frac{-2 \pi \mathrm{f}}{\kappa}} & \mathrm{f}<0
\end{array}
$$

So solutions are of the form

$$
\hat{\mathrm{T}}=\begin{align*}
& \mathrm{A} e^{\left(\frac{1+i}{\sqrt{2}}\right) \sqrt{\frac{2 \pi f}{\kappa}} \mathrm{z}}+\mathrm{B} e^{-\left(\frac{1+i}{\sqrt{2}}\right) \sqrt{\frac{2 \pi f}{\kappa}} \mathrm{z}} \mathrm{f}>0 \tag{104}\\
& \mathrm{C} e^{\left(\frac{1-i}{\sqrt{2}}\right) \sqrt{\frac{-2 \pi \mathrm{f}}{\kappa}} \mathrm{z}}+\mathrm{D} e^{-\left(\frac{1-i}{\sqrt{2}}\right) \sqrt{\frac{-2 \pi f}{\kappa}} \mathrm{z}} \mathrm{f}<0
\end{align*}
$$

Applying the boundary data gives

$$
\hat{\mathrm{T}}=\begin{array}{ll}
\frac{\Delta \mathrm{T}}{2 i}\left(\delta\left(\mathrm{f}-\frac{\omega_{0}}{2 \pi}\right)-\delta\left(\mathrm{f}+\frac{\omega_{0}}{2 \pi}\right)\right) e^{-\left(\frac{1+i}{\sqrt{2}}\right) \sqrt{\frac{2 \pi \mathrm{f}}{\kappa}} \mathrm{z}} & \mathrm{f}>0 \tag{105}\\
\frac{\Delta \mathrm{~T}}{2 i}\left(\delta\left(\mathrm{f}-\frac{\omega_{0}}{2 \pi}\right)-\delta\left(\mathrm{f}+\frac{\omega_{0}}{2 \pi}\right)\right) e^{-\left(\frac{1-i}{\sqrt{2}}\right) \sqrt{\frac{-2 \pi \mathrm{f}}{\kappa}} \mathrm{z}} & \mathrm{f}<0
\end{array}
$$

Since $\omega_{0}>0$ this can be more compactly written as

$$
\hat{\mathrm{T}=} \begin{array}{ll}
\frac{\Delta \mathrm{T}}{2 i} \delta\left(\mathrm{f}-\frac{\omega_{0}}{2 \pi}\right) e^{-\left(\frac{1+i}{\sqrt{2}}\right) \sqrt{\frac{2 \pi \mathrm{f}}{\kappa}} \mathrm{z}} & \mathrm{f}>0 \tag{106}\\
-\frac{\Delta \mathrm{T}}{2 i} \delta\left(\mathrm{f}+\frac{\omega_{0}}{2 \pi}\right) e^{-\left(\frac{(1-i}{\sqrt{2}}\right) \sqrt{\frac{-2 \pi \mathrm{f}}{\kappa}} \mathrm{z}} & \mathrm{f}<0
\end{array}
$$

(c) 5 points

According to the definition of the inverse transform we have

$$
\begin{equation*}
\mathrm{T}(\mathrm{z}, \mathrm{t})=\int_{-\infty}^{\infty} \hat{\mathrm{T}}(\mathrm{z}, \mathrm{f}) e^{2 \pi i \mathrm{ft}} d \mathrm{f} \tag{107}
\end{equation*}
$$

Plugging in the expression from part (b) gives

$$
\begin{align*}
& \mathrm{T}(\mathrm{z}, \mathrm{t})= \\
& \quad-\int_{-\infty}^{0} \frac{\Delta \mathrm{~T}}{2 i} \delta\left(\mathrm{f}+\frac{\omega_{0}}{2 \pi}\right) e^{-\left(\frac{1-i}{\sqrt{2}}\right) \sqrt{\frac{-2 \pi \mathrm{f}}{\kappa}} \mathrm{z}} e^{2 \pi i \mathrm{ft}} d \mathrm{f}+\int_{0}^{\infty} \frac{\Delta \mathrm{T}}{2 i} \delta\left(\mathrm{f}-\frac{\omega_{0}}{2 \pi}\right) e^{-\left(\frac{1+i}{\sqrt{2}}\right) \sqrt{\frac{2 \pi \mathrm{f}}{\kappa}} \mathrm{z}} e^{2 \pi i \mathrm{ft}} d \mathrm{f} \tag{108}
\end{align*}
$$

This is simple to integrate because of the delta functions

$$
\begin{equation*}
\mathrm{T}(\mathrm{z}, \mathrm{t})=\frac{-\Delta \mathrm{T}}{2 i} e^{-\left(\frac{1-i}{\sqrt{2}}\right) \sqrt{\frac{\omega_{0}}{\kappa}} \mathrm{z}} e^{-i \omega_{0} \mathrm{t}}+\frac{\Delta \mathrm{T}}{2 i} e^{-\left(\frac{1+i}{\sqrt{2}}\right) \sqrt{\frac{\omega_{0}}{\kappa}} \mathrm{z}} e^{i \omega_{0} \mathrm{t}} \tag{109}
\end{equation*}
$$

This simplifies to

$$
\begin{equation*}
\mathrm{T}(\mathrm{x}, \mathrm{t})=\Delta \mathrm{T} e^{-\mathrm{z} \sqrt{\frac{\omega_{0}}{2 \kappa}}} \operatorname{Sin}\left(\omega_{0} \mathrm{t}-\mathrm{z} \sqrt{\frac{\omega_{0}}{2 \kappa}}\right) \tag{110}
\end{equation*}
$$

