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The General Context
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FIGURE 1.1. Schematic diagram of a combustion svstem as a teedback amplifier.




The Line of Combustion Instabilities
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FIGURE 1.2. A chronologyv of combustion instabilities.




A Good Example
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FIGUrE 1.36. Exponential growth and development of a limit cvele out of a linearly unstable
motion (Perryv 1968).




One Approximation (Early)
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A Computational Result
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Ficure 1.39. A computed limit cvele and its normalized spectrum executed by a single
nonlinear acoustic mode in the presence of noise (Burnlev and Culick 1996).




A Simple Laboratory Demonstration
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Ficure 1.34. Transient behavior of (a) self-excited linearly unstable motions: (b) forced motions.




The Grand Picture
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FIGURE 2.11. A view of the areas of research and their connections in solid propellant
rockets (Culick 2000).
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Vortex Shedding From a Bluff
Flame Holder

Figure 2.39. Flow past a bluff body flameholder under two conditions of flow at ap-
proximately the same speed. (a) low equivalence ratio, ¢<0.75, no oscillations; (b) high
equivalence ratio ¢>>0.90. acoustic oscillations in the channel (Rogers and Marble 1956).




Simple Vortex Shedding/Driving
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Ficurge 2.29. Sketch of an apparatus for demonstrating the excitation of acoustic modes
by vortex shedding at a pair of annuli. All dimensions in centimeters (adapted from Culick
and Magiawala 1979).




Vortex Shedding & Acoustics

FicurE 2.31. Typical flow between the baffles when a pure tone is generated (Nomoto and
Culick 1982).




Acoustic Modes and Vortex
Shedding
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Ficure 2.32. Experimental results for the excitation of acoustic modes by vortex shedding
(Nomoto and Culick 19582). Open circles identify conditions when significant oscillations
were observed. The length of the chambers from inlet to exhaust.




Summary of Mechanisms for CI
in Solid Rockets
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FIGURE 2.1. The four possible mechanisms for combustion instabilities in solid propellant rockets.




Three Sorts of Vortex
Shedding in Solid Rockets

Figure 6.27. Upper image: flow visualization of parietal vortex shedding, using PLIF with
acetone; Lower image: result of numerical calculations (Avalon et al 2001).
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FIGURE 6.28. The three kinds of vortex shedding (Fabignon et al. 2003).




A Result of a Sub-Scale Test
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FIGUurE 6.30. Experimental results for a test in the LP6 configuration showing parietal
vortex shedding (Prévost et al. 2003).
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Basis of Approximate Analysis

‘Complete’ equations of motion

Express as mean plus unsteady flows

Two ‘small’ expansion parameters: e~p;u~{0
Expand equations to O{u} and O{(e %)} or
O{(e°)}

Expand dependent variables (p’,u’) in normal

modes (N.B. boundary conditions are for cases
of no flow and no combustion)




Basis of Approximate Analysis (cont’d)

 Form perturbed wave equation for p’

 Expand p’(r,t) in modes with time-varying
amplitudes n,,
Oscillator equations for n,,, are inhomogeneous,
coupled and nonlinear
- At this point, no physical processes are ignored

N.B. the dependent variables p’, n’, satisfy correct
(inhomogeneous) B.C. but the expansion basis
functions do not.




Equations With No Approximations
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Equations for Mean Flow (1)
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Some Definitions of Special Symbols
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Equations for Mean Flow (2)
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Equations With Terms Collected by
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Equations for Fluctuations to Third
Order
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Equations for Linear Stability
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Second Order Acoustics
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Nonlinear Wave Equation
(Third Order)
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Linear Equations, Steady Waves




First Order Solution, by Iteration
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First Order Results for Linear
Harmonic Motions
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(4.85) shows that due to mean flow interactions
and other contributions, the system of equations
is always “non-normal” except in very special
cases.




Two Results of One-Dimensional
Representation
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Ficure 2.28. Sketches illustrating two primary processes involved in the generation of
vorticity. (a) flow-turning; (b) ‘pumping action’: oscillatory motion parallel to the boundary,
in the boundary layer, induces oscillatory motion normal to an impermeable wall; (¢) similar
to (b) with mean flow through the wall.
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Conservation Equations for
One-Dimensional Flows
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Source Terms In
One-Dimensional Flows
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Sources Due To Flow Through
Lateral Boundaries
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Sources First Order In
Fluctuations and M
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Nonlinear Wave Equation and
Boundary Condition
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Linear Stability of
Three-Dimensional Motions




A Spatially Averaged Solution

|
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Application of the General Method of
Time Averaging

iV +whTN = HON (4.43)

In any event, for p small, the nn differ but little from sinusoids so (without approximation) it is reasonable
to express ny(t) in the equivalent forms

nn(t) = ry(t)sin(wyt + on(t)) = An (t) sinwnt + By (f) coswyt (4.44)

and
An(t)=rycosdy ; By =rysingy

1. 1
En(t) = iffﬁr + Ewirfﬁr

t4+7




Application of the General Method of
Time Averaging (cont’d)

2 (Ex) = n(Griw) (4.48)

Following Krylov and Bogoliubov (1947) we apply the ‘strong’ condition that the velocity is always given by
the formula for an oscillator is force-free-motion,

l 2 bl
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uG NN = pGNwyTy cos (wnt + on)




Application of the General Method of
Time Averaging (cont’d)

Substitution of (4.52)b in (4.48) then gives
t4r
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Application of the General Method of
Time Averaging (cont’d)

With the relations (4.45), equations (4.54) and (4.57) can be converted to equations for Ay and By:
t+r

/ Gy coswyt'dt’
t

a'AN
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dBy

v __ B Gy sinwyt'dt’
dt th / NEREN

These are the principal and very useful results of time
averaging.
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Rayleigh’s Criterion and Linear Stability

“If heat be periodically communicated to, and abstracted from, a mass of
air vibrating (for example) in a cylinder bounded hy a piston, the effect pro-
duced will depend upon the phase of the vibration at which the transfer of
heat takes place. If heat be given to the air at the moment of greatest con-
densation, or he taken from it at the moment of greatest rarefaction, the
vibration is encouraged. On the other hand, if heat be given at the moment
of greatest rarefaction, or abstracted at the moment of greatest condensation,
the vibration is discouraged.”




Derivation

(6.66)

The instantaneous energy'® of the n'® oscillator is
| - 2 9 :
En = > (T]-n + Wa.ﬂn._] [567)
and the change of energy in one cycle is the integral over one period of the rate at which work is done by
the force F:

I+Tn
Ae, = f Fo(t' )i (¢t (6.68)




Derivation (cont’d)

Re(Fy,) = |Ey| cos (wnt + ¢p) = | Fy| {coswnt cos ¢ — sinwytsin ¢y }
Hence the right-hand side of (6.68) is

t+Tn t+Tr

Ag, = / Re(F,)Re(n,)dt' = w|E,| [ {sin2 wyt' singp — %sin 2wt GGSn;J‘JF} dt’
t 1

- - Ty .
= w|Fy| |7 2_R sin ¢p
Substitution of (6.33)b leads to the formula

Ay, = 2manwn ||

Conclusion

Rayleigh’s Criterion is equivalent to
criterion for linear stability when all gains
and losses are accounted for.




Caltech Dump Combustor
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Remarks:

(i) Positive a,, (the system is linearly unstable) implies that the average energy of the oscillator
increases, and vice-versa.

(ii) Rayleigh’s original criterion is equivalent to the principle of linear instability if only heat exchange
is accounted for and is neither a necessary nor a sufficient condition for existence of a combustion
instability.

(iii) The extended form (6.73) of Rayleigh’s Criterion is exactly equivalent to the principle of linear
instability, all linear processes being accounted for.




Experimental Confirmation
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Ficure 6.11. Experimental confirmation of Rayleigh’s Criterion. Data obtained from
chemiluminescence of OH (Sterling and Zukoski, 1991).
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Representation of Active Control

Cn

Ficure 9.1. Block disgram for a system containing passive (Cg and Cg ) and feedback (C
and Cjy) control.

The scalar transfer function P/F for the system is®
P G(CaCy)

F ~ 1+G(CeCy)(CqQ +Cxs) (9:1)

T Although the use of block disgrams can be helpful in analysis of nenlinear systems, Figuse 8.1 and the following manip-
ulutisns are restrictad to o linear system, hers having single-input and singlesutput, o SISO syvetem.

Ficure 9.2. General block diagram of a combustion system with passive and active control.




‘General’ Block Diagram

COMBUSTOR
DYNAMICS

SYSTEM

Ficure 9.3. A general block diagram for classical and modern control.*{Adapted from a

diagram due to Professor R.C. Murray, private communication. )




Original Proposal of Active Control

SERVO

(DMTROL CAPACITANCE

MT

Ficurg §.4. Schematic of the first proposal for active feedback control of the dynamics in
a combustion system {Tsien 1952).

Ficure 9.5. Block diagram for the system shown in Figure 9.4.




First Use of Fuel for Active Control

4 Bosch automotive
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Ficurg 9.12. The device for mixing secondary fuel and air at the upstream end of the
flameholder shown in Figure 9.9 (Langhorne et al. 1989).




Effect of Control on Combustion

FICURE 9.14. Feedback control at Ecole Centrale (a) apparatus with a 250 kW combustor;
(b) effects of contrel on the lLight emission; (c) schlieren photographs of the combustion
region (i) without and (i) with control (Peinsot ef al., 1987, 1983, 1959).




Early TUM Feedback Control of a
Liquid Fuel/Air System
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FIGURE 9.24. Feedback control at Technische Universitat Miinchen. (a) apparatus: (b) the
piezo actuator (Hermann, Gleis and Vortmeyer 1996).




Test Result for TUM System
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Ficure 9.25. Test results found with the apparatus shown in Figure 9.24. Figure 14 of
Hermann, Gleis and Vortmever (1996).




Siemens’ Experience |

One of the 24 burmners —.

(a)

Fiocure 9.27. A sketch (a) of a combustor used in the Vx4.3A series Siemens gas turbines,
(b) an illustration of the size of the combustor (courtesy of Siemens AG, and Dr. J. Her-
manm).




Siemens’ Experience |l

Main air flow
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(b)

Ficure 9.28. Simplified sketches (a) of the Siemens Hybrid Burner; (b) installation of the
controller in the supply for the pilot burner (adapted from Berenbrink and Hoffmann 2000

and Hermann and Hoffmann 2005).




Rolls-Royce Annular Combustor
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Ficure 9.34. A sketch of an annmular combustor. (Rolls-Royvee 2005)




GE and P&W Combustors Prior to
ECCP (1975)

(a) General Electric CF6-50 (b) Pratt & Whitney JTOD-TA

Ficure 9.33. The two combustors chosen at the beginning of the Experimental Clean
Combustor Program (ECCP). There is no significance to the different relative locations of
the engine centerlines.




GE and P&W Combustors Developed

(a) General Electric DAC II (b) Pratt & Whitney Vorbiz

Ficure 9.35. The GE and PW combustor designs at the end of the Experimental Clean
Combustor Program (ECCP), ¢. 1977. (Gleason and Bahr 1979; Robers, Fiorentino, and
Greene 1977)




Pratt and Whitney Talon Designs
(c. 1980-2007)

(c) PW 6000
Talon II

Ficure 9.36. The sequence of four TALON designs. (McKinney 2007)




Schematic of the Flow Field in the
Talon X Combustor
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Ficure 9.37. Section of the TALON X combustor. (McKinney 2008)




Schematic of Approximate Analyses

Physical
System
¢ Physical laws
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FIGUurE 9.19. The general scheme according te the procedures followed here for connecting
the physical system (a combustor), physical modeling, mathematical modeling, dynamics
and control
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Concluding Remarks (1)

1) & ‘small’ implies restrictions on the expansion of the PDE.

2) Problems to be treated are dominated by wave motions FRIMARY

N
3) Spatial averaging built on expansions in eigenfunctions for unperturbed
problems with homogeneous B.C. (e.g. rigid walls)

> SECONDARY

4) The perturbation/iteration procedure produces results satisfying the
actual B.C. to the order of the expansions.

J

The formulation allows treatment of steady waves and ‘general’ time-dependent
motions.

Time-averaging may be used to reduce N second order inhomogeneous equations to 2N
first order equations valid for ‘slow’ changes of amplitudes and phases (VERY USEFUL)




Concluding Remarks (I1)

7) Eigenfunctions calculated for actual problems (i.e. (3) plus perturbations) are non-
orthogonal. Hence the solutions computed with the perturbation/iteration procedure
are non-normal in the current jargon. Simplest realistic case is linear steady waves:

PNr) = ¥n(r) + in E_ﬂtf;:—% { fff Y (ro)hire)dVy + ﬁgr_ﬁ-nirn.}f{rm 1d.Sq }

ipak M) = —p) — cpu{ M)}y + F 10 + cpuFa,y

- o 1 P o I i - . o I . .
kB =k + — !' fjf War(re)r(ro)dVy + (P v¥nr(ro. ) flre.)dSe i
E5 <
L B -3 J

ar

8) Many results of the ‘standard’ analysis based on spatial averaging have compared
well with experimental results (e.g. instability, particle damping,...)

9) The outstanding current deficiency of results based on non-normality is the
absence of quantitative comparisons with alternative analyses and experimental

results.




