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Horror Vacui?

Otto Von Guerrike 1654/1656



   

Vacuum

The physical vacuum:  

What is left when all that can 
be removed has been removed 
(J.C. Maxwell)

Credit:
G. Ruoso

Heisenberg:

Non-zero ground 
state of EM field, 
and virtual 
particles

The quantum 
vacuum



   

The quantum vacuum

Examples that can be associated:
-Lamb shift
-Anomalous magnetic moment of e and µ
-Casimir force (though other interpretations 
exist) 

Here:
-Properties of the quantum 
vacuum in the presence of an 
external field

Credit:
G. Ruoso

External field



   

The quantum vacuum

Examples:
-Lamb shift
-Anomalous magnetic moment of e and µ
-Casimir force 

Here:
-Properties of the quantum 
vacuum in the presence of an 
external field

-Study with light

Credit:
G. Ruoso

External field

Light beam

∆ n >  0  ?



   

Morley and Miller (1898)

Credit:
G. Ruoso

Phys. Rev. 7, Vol. 5, 283

Light source: Bunsen burner 
colored with sodium
Light polarized with Nicol prism

Magnetic field solenoidal B = 0.165 T

NOT IN VACUUM

Faraday rotation + change of velocity

Looking at fringes by eye, sensitivity:

∆ n ∼ 10-8



Watson - 1929
Motivated by the search for a photon magnetic moment

No effect measured: ∆n < 4 10-7 T-1 Credit:
G. Ruoso
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QED Prediction

● Light slows down in vacuum in the presence of 
a magnetic field (perpendicular to the direction 
of light propagation) .
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Vacuum is birefringent:



   



Light propagation in QED

= c
Real photon
propagation

Bare photon
propagation

Virtual pairs
interaction

Without 
external 
field

With 
external 
field

Real photon
propagation

Bare photon
propagation

Virtual pairs
interaction

Higher order corrections

c depends on external field! 
Credit:
G. Ruoso

External B,E External B,E



ɛ_0 and µ_0 may be consequences of ephemeral (virtual) particles,
...and so may c !

❑❑
εε



   

QED

● Not tested much in weak field, low energy limit

But some people try hard...



   

Ellipsometer Method

Emilio Zavattini 
(1927 -2007)

Absolute phase shift is hard to measure, study anisotropic
Changes of refractive index instead. (birefringence, dichroism)



   

PVLAS Legnaro (1992-2008)

Factor 5000 away from QED prediction



   

New PVLAS layout (Ferrara)

Finesse 700 000



   

Isolated optics table

Credit:
G. Ruoso



   

3.75 Hz spinning...



   

            BafflesGuido Zavattini



   

PVLAS: recent progress

Limited by currently unexplained noise: 
One suspect: birefringence of mirror coatings



   

BMV: temporal B-field modulation
with pulsed magnets



   

BMV, new setup (Jan. 2015)

X-coil



   

PVLAS, BMV, and others

● Measure polarization variation of laser beam 
induced by a varying magnetic field. The B-field 
variation can be spatial (PVLAS) or temporal 
(BMV).

● Typical problem: Bi-refringence of mirror optics ?
● Best upper limit today by PVLAS collab.: 

factor 10-50 away from QED prediction 
(new PVLAS Exp., improved factor ~100 in 2014)



   

Field modulation vs. measurement 
technique

Rotate B-field Modulate strength of 
B-field

Measure polarization PVLAS, others BMV

Measure phase GW detectors? GW detectors?

(Get refractive indices for
par. and perp. direction
independently!
→ More implications for 
particle physics)



   

Connection to particle physics

● Milli charged particles: 
Hypothetical particles with mass < m(e),  
->virtual pairs at lower energy, would show up 
as ellipticity in addition to QED prediction

● Axions: Effective absorption of photons 
(due to coupling to axions) would show up as 
dichroism (linear polarization rotation) 



   

1979: Proposal to use Laser 
Interferometers



   

2002: Proposal to use GW detectors.

-too optimistic in assuming possible increase in sensitivity 
with increasing cavity Finesse
-neglecting possible integration of signal over time



   

2009: Virgo / Electro-Magnets

-pointing out new physics potential 



   

2009: LIGO/GEO Pulsed Magnets

-assumes aperture of O~cm



   

2015: Feasibility / Magnet design



   

Integration time for sinusoidal signal

Displacement signal

Displacement noise
Ampl. spectral density



   

Measurement time as function of 
displacement sensitivity

Adv. LIGO, Virgo,
Kagra,2018/2019



   

Displacement Sensitivities



   

Here: Is it feasible?
And with what kind of magnet?

● IFO aspect: smallest acceptable aperture: 
~3 times beam size ( < 1ppm loss)

Energy in magnetic field:



   

Some IFO beam sizes

Interfero-
meter

Beam 
radius at 
waist

Minimal aperture radius 
(3 x waist radius)

Realistic aperture 
radius, including 
vacuum tube 

GEO (no arm 
cavities)

9 mm 27 mm 40 mm

Virgo 10 mm 30 mm 45 mm

LIGO 12 mm 36 mm 55 mm

KAGRA 16 mm 48 mm 70 mm

ET-LF 29 mm 87 mm 130 mm

Beam waist near middle of arm cavity



   

Linear magnet

Simple scaling law:
B^2 D ~ P A / r^2AA

r



   

Continuous operation of a linear magnet

For B^2 D = 1 T^2  m:
(r=55mm, A~r^2)

P  = 300 kW ( thermal dissipation only )
Pr = 2.5 MW ( reactive power, f=25 Hz )
        1 MW with ferro-magnetic material surrounding the conductor

Electricity:
1 year * 1 MW = 8.76 M kWh ~ 2 M €



   

Intermittent operation of a magnet

P  = 20 kW ( average power )
P  = 100 MW ( pulse power, 10ms pulse length )
E  = 1 MJ, 240g TNT 
1 pulse every 50 s.
600000 pulses for SNR=1 (1 year) 



   

Magnet Aspects

● Electro-magnets: very difficult due to high 
energy in B-field. Perhaps better with new 
alloys and lower frequencies. Very large 
dissipation.

● Pulsed magnets: Limited lifetime seems the 
main problem. Large apertures do not exist yet. 
(see 'X-coil' for BMV, long development time)

● Permanent magnets: Field energy does not 
have to be shifted around...



   

Magnet as Halbach Cylinder

B  = Br * ln(ro/ri)
Br ~ 1.3T for NeFeB

Laser beam

Example: B = 1.0T   for ro=121mm, ri=55mm  → m=328kg for D=1.2m
NeFeB: 150$ / kg → 50k$ / Magnet



   

Nested Halbach cylinders
for ampl. Modulated B field

Advanced QED measurement !



   

IFO assembly with valves and baffles

● Chamber for baffle suspension at entry to 
small-aperture tube



   

Where? 

GEO2015

LLO2015

Low displacement noise hard to reach with small beams
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LIGO Hanford:
Only facility with mid-tube gate valves

e.g: install during A+ 2. upgrade phase, or Voyager upgrade...

~10m space
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A QED calibrator ?

● Magnetic field excitation stable over years, can 
be determined to sub-% level

● Only need magnetic excitation and QED 
prediction (and good vacuum)

● Long integration time:  
3% accuracy for ET-HF after 1 year



   

Conclusion

● VAC QED at GW-IFO:
Different method (phase lag signal rather than 
polarization shift signal)

● Maybe ambitious, yet still looks feasible
● Quasi-parasitic addition to existing facility
● Permanent magnets seem to be an option for 

now
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