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% 'The road to detecting stochastic backgrounds with pulsar timing arrays

% Testing general relativity with pulsar timing arrays
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Gravitational wave spectrum and sources
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Gravitational wave (GW) experiments

The (detectable) gravitational wave spectrum

Freauency (Hz)

supermassive black hole neutron star/black hole compact binary coalescence,
binaries binaries supernovae, pulsars
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Pulsar Timing Array
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A: GWs from e.g. supermassive  B: GWs perturb space-time  C: ionized gas in the interstellar medium  D: GW perturb signals from all pulsars at Earth.
BH binaries (also cosmic strings) at the pulsars as they transit disperses & scatters the light from pulsars Time of arrivals and residuals are calculated.
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Pulsar timing preliminaries
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Pulsar timing preliminaries

ulse train
< p
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* A passing GW induces a redshift in the pulse train from the pulsar. This

redshift can be calculated with the geodesic equation.

But important to note that the physical observable is not the redshift: is the
timing residual

T(t) — TOAaetual — TOAexpected
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sk Gravitational-wave detectors

% 'The road to detecting stochastic backgrounds with pulsar timing arrays
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Stochastic GW searches with PTAs

Hellings-Downs Curve

+ First showed by Hellings and Downs
in 1983 that a GW produces uniquely
correlated variations in the timing
residuals of a set of pulsars

Correlation XIJ

+ So can search for GWs by fitting this

curve to the cross-correlated data

(Jenet et al. 2005)

-0.5

0 50 100 150

Angular separation (deg) CIJ

+ Or, find an optimized cross correlation that takes into account the GW
spectrum and noise power spectra:

(P ()T (f) o< Qau(f) 8(F — £ X

Correlated residuals GW source spectrum Hellings-Downs
coefficient
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Stochastic GW searches with PTAs

+ Stochastic background generated by a large # of independent, individually
unresolvable sources:

- cosmic string bursts

- colliding bubbles from CQD phase transitions

- supermassive black hole binaries

+ Sources provide spectrum for (isotropic) stochastic background:

(P ()T (f) o< Qau(f) 8(F — £ X
Hellings-Downs

GW source spectrum
coefficient

Hellings—Downs Curve

Correlated residuals

/

How do we get timing residuals?
v

f 2c
ng(f) OCAEW f2 <f1—yr> i{ |
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Angular Separation of Pulsars {j;

N =

Correlation j;
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Stochastic GW searches with PTAs

+ Such an optimized cross-correlation (or optimal statistic) first probed by Anholm
et al. 2009, but focused on frequency domain implementation

# But PTA data is very irregularly sampled...
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# ... and we need a timing model to predict TOA:s.

What follows will develop the optimal statistic in the time-domain
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Time-domain optimal statistic
* At radio telescope, measure TOAs (essentially phase of pulsar)

#* TOAs contain many terms of known functional form: intrinsic pulsar
parameters, pulse phase jitter, possible red noise from interstellar medium

effects, stochastic GWB (2)...

1
¢ = ¢o+v(t—1ty) + §D(t — t9)*+ sky location terms + binary terms (if appropriate) + ...

~ _—

l

TOAobserved — TOAmodeled +n

T~ Gaussian Process:

Intrinsic red and white

* Timing model is projected out of TOA data with linear operator R 0ise IS .

r = R(TOAmodeled -+ n) = Rn

all information about noise sources/stochastic GWB is contained in n, but we
can’t actually measure n directly because we subtract out the timing model.
Instead, work with observable quantity r.
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Time-domain optimal statistic

* Assume that we have a PTA with M pulsars, each with some intrinsic noise

*  Since we assumed that the intrinsic pulsar noise was Gaussian, the likelihood
function for the PTA is just be a standard multivariate Gaussian

1 1 . T§—1
njt) = exp (—zn’3; 'n)
p( | ) \/det(ZwZn) P 2 n
where
_ - -
19 D, : pre-fit noise covariance matrix
11 =
) : parameters that characterize the noise
o

* Just one problem: we don’t measure n. The observable is r.
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Time-domain optimal statistic

*  We want the likelihood for r. Some math happens...

* ... and we get the likelihood for our observable, r:
p(r|f) = ——L p(—3r' X7 'r)
\/ det(2732) 2
where now

Diagonal terms depend on red noise power spectrum
(pulsar’s intrinsic red noise + GW)

Pr(f) = Pr(f) +Py(f) where  Py(f) oc Ag f™7
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Time-domain optimal statistic

*  We want the likelihood for r. Some math happens...

* ... and we get the likelihood for our observable, r:

Hellings—Downs Curve

where now

N I—

=)

Correlation j;

0 x
2
Angular Separation of Pulsars {j;

Off-diagonal terms given by cross-covariance matrices,
depend on Hellings & Downs curve and GW power spectrum

e. St =515 (x15, Po(F)), Polf) o< Ay £
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Time-domain optimal statistic

*  Since we are in the weak signal limit (noise > signal), we obtain the optimal
statistic by maximizing the likelihood ratio over GW amplitudes (for a fixed GW
spectral index «)

T —138 1
o ZIJTIPI SiyPy Ty

A? =
@ [P;lsuP;lSﬂ

# 'The normalization factor is chosen so that the optimal statistic is also the maximum
likelihood estimator for the amplitude of the stochastic GWB

(want to quantify significance of the expected GW correlations between
pulsars, but give larger weight to timing residuals with lower noise levels!)

% The SNR for this statistic is
T p—138 1
ZIJ ry Pr-SryPyry

(Zu Ir [Pz_lgup,f_lgﬂ})lﬂ

H =

(strength of correlated signal compared to uncorrelated signal of same strength)
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Limitations and uses of this method

* 'The time-domain implementation of the optimal statistic allows us to deal more
naturally with irregular data sampling and noise modeling

* But, it has some drawbacks: because we model the noise in individual pulsars, end
up with potential biases in amplitude estimates

* So... not a substitute for more robust Bayesian analyses — but it still has some
advantages

- Computationally inexpensive (esp. compared to Bayesian inference)

- SNR as defined here turns out to be an excellent approximation to the Bayes
factor in Bayesian analysis

- Can use time-domain optimal statistic to probe scaling laws for PTAs

- Can also be used to create signal injections

For all the details, see Chamberlin et al. 2014, arXiv: 1410.8256
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Outline

sk Gravitational-wave detectors

% 'The road to detecting stochastic backgrounds with pulsar timing arrays

* Testing general relativity with pulsar timing arrays

PHYSICAL REVIEW D 85, 082001 (2012)

Stochastic backgrounds in alternative theories of gravity: Overlap reduction functions
for pulsar timing arrays

Sydney J. Chamberlin and Xavier Siemens
Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee,
P.O. Box 413, Milwaukee, Wisconsin 53201, USA
(Received 5 December 2011; published 12 April 2012)

In the next decade gravitational waves might be detected using a pulsar timing array. In an effort to
develop optimal detection strategies for stochastic backgrounds of gravitational waves in generic metric
theories of gravity, we investigate the overlap reduction functions for these theories and discuss their
features. We show that the sensitivity to nontransverse gravitational waves is greater than the sensitivity to
transverse gravitational waves and discuss the physical origin of this effect. We calculate the overlap
reduction functions for the current NANOGrav pulsar timing array and show that the sensitivity to the
vector and scalar-longitudinal modes can increase dramatically for pulsar pairs with small angular
separations. For example, the J1853 + 1303 — JI857 + 0943 pulsar pair, with an angular separation of
about 3°, is about 10* times more sensitive to the longitudinal component of the stochastic background, if
it is present, than the transverse components.
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Alternative theories of gravity?

* Direct observation of gravitational waves will provide mechanism to test GR

against other viable theories

* By “viable”, mean theories that obey
the Einstein Equivalence Principle:

metric theories of gravity

- Other gravitational fields
(besides the metric) can
exist, but only the metric
itself interacts with matter.

- Distinguish metric theories
from one another by # and
type of other fields involved
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GWs in metric theories of gravity

*  What’s different from GR? Now (up to) six possible GW polarizations:

(b) cross mode

X ory

(e) vector-x mode (f) vector-y mode

#  What happens to stochastic background analysis from earlier slides when
other polarizations possible?
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Geometry of the pulsar-Earth system

* Let’s begin by considering a single pulsar & GW propagating nearby

/
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GWs in metric theories of gravity

* By definition, the redshift induced in the pulsar’s signal is:

A Vp_ye

2(t,Q2) =

Ve

which ends up being (Detweiler, 1979):

. p'p’ . A
2(t. ) = i [hi-t ) — hyi(te, )
(0.0 = 5B [, ) s,
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GWs in metric theories of gravity

* By definition, the redshift induced in the pulsar’s signal is:

A Vp_ye

2(t,Q2) =

Ve

which ends up being (Detweiler, 1979):

: p'p’ A A
2(£,Q) = i [hi-t,Q —hi-te,Q}
R L USUR Ny

Terms describing pulsar-Earth-GW geometry
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GWs in metric theories of gravity

* By definition, the redshift induced in the pulsar’s signal is:

A Vp_ye

2(t,Q2) =

Ve

which ends up being (Detweiler, 1979):

A p'p’ A A
Zt,Q — ~ {hzt,ﬂ —hi'te,Q}
(80) = P [ 9 = 0, 0)

Terms describing pulsar-Earth-GW geometry

“Earth” term: correlated for all pulsars, independent of pulsar-Earth distance
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GWs in metric theories of gravity

* By definition, the redshift induced in the pulsar’s signal is:

A Vp_ye

2(t,Q2) =

Ve

which ends up being (Detweiler, 1979):

: p'p’ : A
2(t. Q) = A [ht 0 —hi-te,Q]
(60) = S [0, 9) = i1,

Terms describing pulsar-Earth-GW geometry

“Earth” term: correlated for all pulsars, independent of pulsar-Earth distance

“Pulsar” term: not correlated for all pulsars, dependent on pulsar-Earth distance
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GW redshift on the pulsar-Earth system

* By definition, the redshift induced in the pulsar’s signal is:

A Uy — U
2(t. Q) = L c
(0.0 = 2
which ends up being (Detweiler, 1979):
: p'p’ A A
2(t, Q) = A [htﬂ —hi-te,Q]
i [t ) = st 0

turns out to be more useful to work in frequency domain...

_ o . A.A pzpj A ~
Za(f, Q) = (e 2™ EUTRD) 1) ——e:(Q)ha
20+ Q-p)

A E {_|_7 ><7b7l7x7y}
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GW redshift on the pulsar-Earth system

* When GW direction ) and pulsar direction p are anti-parallel, things get
tricky...

. , A J A~
Za(f, Q) = (e 2mi/ 02D % @p SO

* 'Two physical scenarios that allow a Taylor series to be done on the pulsar term:

Case 11 Long-wavelength limit. metric perturbation same at pulsar and Earth

ie., fL<<1

Case 2. Surfing’: metric perturbation at pulsar when pulse is emitted, and
on Earth when pulse is received, also nearly the same

In the “surfing” regime, it is tempting to go back to the time domain and
conclude that the effect of the GW cancels... but this is not correct!
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GW redshift on the pulsar-Earth system

* 'To see delicate interaction between pulsar term and geometric term, do series
expansion in the frequency domain.

Let Q-p=—-1446, 6&<<1:

A

. o Pty A AN
Za(f, Q) = (e72m/HUIHRD) ) ——€,;()ha
l 21+ Q-p)

Za(f, Q) x f [@?j 6243' ha doesn’t vanish for non-

transverse polarizations!

* Does redshift diverge or remain finiteas § — 0 ?

A

When - p ~ —1, redshift can increase monotonically

(up to point some limiting frequency where
Taylor series no longer valid)
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What does this mean for PTA observations?

* Increasing redshift term for non-transverse GW polarizations suggests possible
enhanced detector response to those polarizations

Let’s consider how this effect
manifests with a PTA!

@ February 17,2015 California Institute of Technology



What does this mean for PTA observations?

* Increasing redshift term for non-transverse GW polarizations suggests possible
enhanced detector response to those polarizations when ( is small

/

Pulsar J

Pulsar 1

For simplicity, assume equidistant pulsars,i.e. L; = Lj; =L
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Overlap reduction functions

* Recall from earlier in talk:

(FT ()7 (f) o Qqu(f) §(f — 1) x15(C)

Correlated GW source Hellings-Downs

residuals spectrum coefhcient

L
i

J
* More generally, require overlap reduction function to characterize expected \

correlation:

General Relativity Metric Theories

x1.(¢) > |T1(f,¢) = F(f)xrs(C)

* In general, the larger I';; is the more sensitive we are to the GW.
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Overlap reduction functions

‘ For PTA experiments,

smallest frequencies sensitive to

f~0.1yr?

Pulsar J

nearest pulsar distances

L ~100ly

Pulsar I

for PTA experiments,

fL > 10

Can plot overlap reduction
functions to see what effects present
when ( small in this fL regime
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Overlap reduction functions for general relativity

Lrs(fL, ¢ faEQLJXIJ

can toss this out
with frequency term

1 .5 ‘ ‘ ‘ / \ ‘ ‘ T ‘ : ‘ w w T I w T ‘ ‘
| —» fL > 10
f Pulsar timing experiments

without frequency term

//\\@ I =71/10
{\v/;xgi 05 i
/) E : -
(a) plus mode — |
0.0 ¢ =37/10
|! L =g
0.5 i |
o 5 1b 1520
fL. Anholm et al. (2009)
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Overlap reduction functions for other GW polarizations

If L;y=Lj;=L,canwrite I';;(fL,{) = ML)XIJ(C)

can toss this out
with frequency term

12 l
i A | Pulsar timing experiments
1.1 without frequency term i
Y : :
IO, , |
/\ 10 | ¢ = /3
\ / : % 09.0 1./ _ A = 37/10
(c) breathing mode 4 A VY o Wy s i : :
08“ i ¢ =n/2
Ak l
0.7 V ;
% s 10 15 2

Chamberlin & Siemens (2012)
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Overlap reduction functions for other GW polarizations

It L;=Lj;= L, can write FIJ fL @XIJ

need this term for pulsars with small angular separation

—»» {L > 10
Pulsar timing experiments

C=0

¢ =n/10
C=m/5

0 =37/10
5 10 15 20

order of magnitude
gained in sensitivity fL

Chamberlin & Siemens (2012)
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Overlap reduction functions for other GW polarizations

It L;=Lj;= L, can write FIJ fL @XIJ

cannot remove frequency dependence

500

400 most interesting case is for
coaligned pulsars

X ory j
e~ 300 L %
(1Yegd ™
LE |

a couple of orders of —————

magnitude gained in 0 S - 10 - 15 - 20

sensitivity f1
Chamberlin & Siemens (2012)
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Implications and future work

* Frequency-dependence in the overlap reduction functions for non-transverse
GW polarizations comes with an increase in sensitivity:

for pulsars with small angular separations on the sky, PTAs will
experience an enhanced response to non-transverse GW's

(especially to scalar-longitudinal GWs)

# Effect can be observed by plotting overlap reduction functions for current

NANOGrav pulsars

* Result in good agreement with other similar analyses in the literature:

Lee et al. (2008) -- computed cross- Alves & Tinto (201 1) - computed
correlation functions and observed antenna sensitivities for PTA, argue
frequency dependence in non- more sensitive to non-transverse
transverse modes modes

*  Future work will determine how feasible it will be to extract polarization
content from stochastic GW observations

& February 17,2015
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Summary

Optimal Detection Statistic in Stochastic GWB Searches

* We have developed an optimal cross correlation that takes into account the GW
spectrum and noise power spectra.

* 'There are many applications of this statistic, but it’s better used for quick estimates;
full Bayesian analysis still preferable.

* For details, see Chamberlin et al. (2014), accepted to Physical Review D
(arXiv: 1410.82506)

Tests of General Relativity with PTA Detection

* PTAs are potentially much more sensitive to scalar longitudinal and transverse GW
polarization modes than to those of GR.

# Details in Chamberlin & Siemens (2012), Physical Review D 85 (082001)

# Future plans: disentangling GW polarizations from observed GWB

Thank you!
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Application to NANOGrav pulsars

# Used pulsar distance data for 20 NANOGrav pulsars to calculate overlap reduction
functions:

\®)
-

J0613-0200 ,J1713+0747, 163.938 °

[
)
T [ T
\

J1012+5307,J1909-3744,145.17 °

)

JO218+4232,J1738+0333,115.542 °

[';,(f) for widely separated NANOGrav pulsars
S

4.x107% 6.x107%  8.x107% 1.x107/
f (Hz)
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Application to NANOGrav pulsars

# Used pulsar distance data for 20 NANOGrav pulsars to calculate overlap reduction
functions:

5 *

= 10000 J1853+1303, J1857+0943, 3.35341 °

= f

'ia‘ ﬁ

> 8000

= f

S 6000

7 I

= |

> 4000 -

'ﬁ L

S f

= 2000 J1903+0327,J1918-0642, 10.8212 °

5 f

&) 0 |

= 0 2.x107%  4.x107® 6.x10°% 8.x107% 1.x1077
f (Hz)
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