
Abstract – Computer simulation methods have been 
developed for study of bending wave generation by model 
flagella that can bend in three dimensions. Helical bending 
wave generation appears to be the default result obtained 
with the simplest possible mechanism for controlling activity 
of the dynein motor enzymes that propel a flagellum. The 
new computer simulation methods allow a more realistic 
comparison of swimming by helical or planar bending waves. 
They confirm earlier conclusions that for small uniflagellate 
cells such as spermatozoa, planar bending waves are better 
than helical bending waves. Given the basic radial symmetry 
of flagellar structure, generation of planar bending waves 
requires the evolution of more complex control mechanisms.

I. INTRODUCTION

The  eukaryotic flagellum is a cylindrical structure containing 
a cytoskeleton referred to as the axoneme. The axoneme 
contains all of the machinery required for generation of 
appropriate bending patterns by flagella and cilia. The primary 
component of the axoneme is a ring of equally-spaced outer 
microtubular doublets, forming the cylindrical surface of the 
axoneme. In most cases, these doublets appear to be identical 
and are nine in number. Each outer doublet supports rows of 
the motor enzymes known as dyneins. One row, containing the 
inner arm dyneins, contains a complex of about seven distinct 
dyneins, repeating at 96 nm intervals along the length. The 
inner arm dyneins are required for initiation and propagation 
of bending. A second row, present in most axonemes, contains 
one type of dynein, repeating at 24 nm intervals along the 
length. These outer arm dyneins act as amplifiers, increasing 
the frequency of beating and probably generating the majority 
of the power output. Dyneins generate sliding between 
microtubular doublets, which can be converted into bending 
of the axoneme by local differences in dynein activation or 
sliding resistance along the length of the flagellum. 
 We have very little information about the control 
mechanisms that operate within flagella to produce local 
differences in dynein activation or sliding resistance, in order 
to generate appropriate bending patterns. Speculation about 
control mechanisms has been assisted by computer models 
that can generate bending patterns that result from hypothetical 
control mechanisms. These computer simulations were 
originally focused on flagellar models that were restricted to 
planar bending. A simple switching of dynein activation by the 

local curvature of the flagellum was found to be sufficient to 
provide a mechanism for flagellar oscillation and propagation 
of bending waves along the flagellum [1].
 This computer simulation approach has recently been 
expanded to deal with flagellar models that can bend in three 
dimensions [2]. Local switching of dynein activation by the 
curvature of each doublet is sufficient to establish a pattern 
of dynein activation referred to as "doublet metachronism". 
In this pattern, regions of dynein activation propagate along 
each doublet, with a phase shift of approximately 2π/9 radians 
between each adjacent pair of doublets. When each outer 
doublet is identical, doublet metachronism is the default result 
and the appropriate activation pattern for the production of a 
helical bending wave. However, most sperm flagella generate 
planar bending waves. We need to understand why and how 
they do this.

II. METHODS

The method for simulation of flagellar movement uses 
a computer to obtain numerical solutions to the moment 
balance equation for a flagellum. This equation is the partial 
differential equation that balances active bending moments 
generated within the flagellum against the bending moments 
resulting from structural and external resistances to bending. 
These moments are functions of the shape of the flagellum, 
the rate of change of shape, and the current state of the active 
moment generating system. The rates of change of shape, at 
discrete intervals along the length of the flagellum, are the 
unknown variables. After solving the equation, these rates are 
used to update the shape, and the process is repeated through 
time. 
 This computer simulation method was initially 
developed for a two-dimensional model of a flagellum, 
which was restricted to bending in a plane [1]. The shape 
of the flagellum was described by its curvature at discrete 
points along the length, and the rates of change of curvature, 
dκ/dt, were the unknown variables. The method has now 
been extended to a model that can bend in three dimensions 
[2]. In three dimensions, the curvature and rate of change of 
curvature are vector variables, with x, y and z components 
in the local coordinate system at each point along the length 
of the flagellum. In current models, shear forces generated 
along each of the outer microtubular doublets, usually 9 in 
number, are developed and incorporated independently. Active 
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bending moments are obtained by integrating active shear 
forces along the length. No attempt is made to consider the 
forces that maintain the position of the outer doublets in the 
fl agellar cross-section. Bending, twist, and internal sliding 
are the only allowed motions, and these are coupled because 
bending results from differences in sliding at positions along 
the length. 

Active shear forces for each outer doublet can be 
obtained by stochastic modelling of the behavior of each 
individual dynein motor [2,3,4,5]. Since a typical fl agellum 
contains tens of thousands of individual dynein motors, this 
is computationally slow, and for many purposes it is valuable 
to obtain active shear forces from a simple mathematical 
model that incorporates the property that the active shear force 
decreases with sliding velocity [2,6].  Results in this paper 
have been obtained with this simplifi ed method for active 
shear force.
 External viscous resistances are incorporated using 
the approximate method introduced by Gray and Hancock 
[7] and improved by Lighthill [8]. This method is known as 
the resistance coeffi cient method. It assumes that the viscous 
resistance on any segment of the model can be obtained by 
multiplying the velocity components by resistance coeffi cients 
that are the same at every point along the length of the 
fl agellum. Propulsion results from the fact that the resistance 
coeffi cients are 1.8 times larger for movement normal to the 
length than for movement parallel to the length.
 In the previous paper on three-dimensional models 
[2], the method used for computing the moments resulting 
from external viscous resistance was not suffi ciently accurate. 
The problem arises in computing the velocity, relative to the 
external fl uid, of a segment j of the fl agellum caused by rate 
of change of curvature at each joint k. In two dimensions, this 
can be done accurately by multiplying the local rate of change 
of curvature by the distance between joint k and segment j. 
This lever arm distance can be obtained from the current 
shape of the fl agellum [1]. In three dimensions, the rate of 
change of curvature is a vector in the local coordinate system 
of the fl agellum, and it must be transformed to the external 
coordinate system of the surrounding fl uid before being 
multiplied by the lever arm distance. In Equation 14 of the 
previous paper [2], the local rate of change of curvature at joint 
k was transformed using the transformation matrix A[k]. This 
did not give accurate velocities. However, if the transformation 
is performed using 0.5*(A[k] + A[k+1]), suffi ciently accurate 
velocities are obtained. The rationale for this adjustment is 
discussed in detail elsewhere [9]. The results in the remainder 
of this paper are the fi rst results presented using this new 
method.
 In order for these computer methods to generate more 
or less realistic fl agellar motions, some form of control of the 
dynein-generated shear moment is required. In particular, 
at any position along the length, dyneins on one side of the 
axoneme must be inactive while dyneins on the other side are 

active. This is required to prevent a situation where all of the 
dyneins are antagonizing each other and producing no useful 
bending. The models examined here use a simple form of local 
curvature control, in which dyneins on each doublet respond 
to the local curvature of that doublet. Dyneins on a doublet 
become active when the local curvature exceeds a critical value, 
and remain on until the local curvature of that doublet exceeds 
the critical value in the opposite direction. The hysteresis in 
this control loop provides a basis for oscillation. In a fl agellar 
model that can bend in three dimensions, this form of local 
control is suffi cient to establish doublet metachronism, in 
which regions of dynein activation and inactivation propagate 
along the length with a phase shift of approximately 2π/9 
radians between adjacent doublets [2]. The cycle frequency of 
the model is the repeat frequency of the doublet metachronism 
pattern, and also the frequency of rotation of the curvature 
vector in the local x,y plane of the fl agellum.
 Forward velocity for planar bending patterns is 
measured by the change in position of the base of the fl agellum 
in one bending cycle. This method is diffi cult to apply to three 
dimensional bending, because the frequency of rotation of the 
helical pattern is not equal to the cycle frequency. Forward 
velocity for helical bending patterns is estimated by the 
average velocity of the base in the local z coordinate direction. 
These velocities were computed for 4 bending cycles, after 
stabilization of the bending pattern.

Parameters for a specifi c example -- Results for the 
example used for this paper were obtained with the following 
parameters:
 The structure of the fl agellum is defi ned by using 

A B

Fig. 1. Diagrams showing the positions of outer doublets 
in the axonemal cross-section. Thin black arrows indicate 
the direction of the shear moment vector produced by the 
dyneins on each doublet. Thick gray arrows indicate a possible 
direction for the controlling curvature for each doublet. In 
A, each doublet is identical. In B, the controlling curvature 
directions have been modifi ed so that planar bending will be 
generated.
_________________________________________



9 outer doublets, with a center to center spacing of 60 nm, 
placing them in a circular array with a diameter of 175 nm (Fig. 
1). In the absence of external forces, these doublets run straight 
along the axonemal cylinder, without twist. This matches the 
geometry of the majority of simple flagella and cilia. Simple 
sperm flagella typically range in length from 30 to 50 µm. A 
length of 40 µm is used for this example. The standard value 

of elastic bending resistance of 2.0 × 108 pN nm2 is consistent 
with various experimental measurements of axonemal and 
microtubule stiffness [6]. Elastic shear resistance, which might 
be provided by interdoublet linkages other than dyneins, is not 
a necessary component, but contributes to uniformity of bend 

amplitude along the length [2]. A relatively low value of 3 pN 
per doublet for the non-linear elastic shear resistance constant 
is used in this example. The elastic twist resistance is 2.2 times 
the elastic bending resistance, as calculated for the simplest 
axonemal model by Hines and Blum [10].
 The active shear moment generated along each 
doublet is generated by a simple mathematical model with 
three parameters [6]. The maximum shear moment at 0 sliding 
velocity is 6 pN nm/nm. Since the wave number increases 
with the ratio of maximum shear moment to elastic bending 
resistance, as in two-dimensional models [6], this value is 
chosen empirically to give a wave number in the desired range. 

_____________________________________________________________________________________
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Fig. 2. Output from a typical computation using a simple mathematical model for dynein activity, with identical control of 
dyneins on each outer doublet, as indicated in Fig. 1A. Normal external viscosity, with no load at the base of the flagellum. 
Parameters for this model are given in Methods. The diagram in the upper left shows regions of active and inactive dynein on 
each outer doublet, at the end of the computation. Three diagrams in the upper right show the shape of the flagellum at the end of 
the computation, as projections on the YZ, XY, and XZ planes (from top to bottom). The lower plots show curvature and shear 
angle at 0.25 cycle time points in the last cycle of bending, using black curves at the final time point and gray curves at the earlier 
time points. The plots for rotation in the xy plane use black curves to show total rotation (twist + writhe) and gray curves to show 
twist. The frequency is 41 cycles per sec.



The stiffness of the active shear moment system is given a 
value of 4, which means that a sudden shear step of 0.25 rad, or 
15 nm, will reduce the moment to 0 [6]. The effective stiffness 
of myosin motors in skeletal muscle is 2-4 times stiffer than 
this value, but no information is available for dynein. The 
recovery rate constant has a value of 1300 s–1, which gives an 
appropriate frequency. In the steady state, the force generated 
by this model decreases linearly with increasing sliding 
velocity, to 0 at a sliding velocity equal to the rate constant 
divided by the stiffness, or 325 rad s–1.
 The control of the active shear system involves two 
parameters, which primarily regulate the pitch angle of the 
helical bending pattern [2]. The critical curvature at which 
switching occurs is 0.12 rad µm–1. The angle between the 
azimuthal directions of moment and controlling curvature (see 
Fig. 1A) for each doublet is 0.16 rad. The sign of this angle 
parameter determines the handedness of the helix [2].
 The standard viscosity corresponds to a tangential 

viscous drag coefficient of 2.16 × 10–9 pN s nm–1 [2, 6]. 
Computations were performed with the length of the flagellum 
divided into 100 equal segments (length 0.40 µm) and 400 
time steps per bending cycle. 

III. RESULTS

Using a simple form of local curvature control of dynein 
activity (described in Methods), the three-dimensional 
flagellar models can generate quasi-helical bending patterns. 
Figs. 2 and 3 show results at the end of a typical computation. 
The shape of the flagellum is not a pure helix, because bending 
is initiated at the basal end in a manner that keeps the basal end 

close to the helix axis, rather than on a cylindrical surface. For 
biologically useful swimming, this is a much more satisfactory 
solution. Results very similar to those shown in Fig. 2 are 
obtained for a model operating in the absence of any external 
viscous resistance. Operation at 0 viscosity is possible because 
the mathematical formulation used for generating active dynein 
shear forces is such that the shear force decreases linearly 
with sliding velocity, as if a viscous resistance were present 
to reduce the net shear force. In contrast to the situation with 
two-dimensional bending [6], addition of external viscosity 
has relatively little effect on the helical movement. This is 
because the viscous resistance to rotation of the flagellum 
around its longitudinal axis is very low, compared to resistance 
to movement through the fluid. Consequently, this rotation 
becomes the primary movement, and minimizes the lateral 
movement of the flagellum against the surrounding fluid. As a 
result, little or no thrust is generated, and the forward velocity 
is close to 0 [11,12].
 A flagellum is normally attached to a cell body that 
increases the resistance to rotation and thereby allows a helical 
bending wave to generate thrust, propelling the cell body. 
Fig. 4 shows results computed for the same model as Fig. 2, 
at normal external viscosity, with a spherical load at the base 
of the flagellum. As the radius of the load is increased, the 

Fig. 4. Results of computer simulations using the model of Fig. 
2, with the addition of a spherical viscous load at the base of 
the flagellum. The lower two curves, with solid points, show 
velocities obtained with the dynein contol protocol shown in 
Fig. 1A, which produces helical bending waves. The curve 
with a dashed line shows the results that would be obtained 
if the spherical viscous load only resists rotation, without 
resisting linear movement. The upper curve, with open circles, 
shows velocities obtained with the dynein control protocol 
shown in Fig. 1B, which produces planar bending waves. 
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Fig. 3. Three dimensional view of the shape of the flagellar 
model at the end of the computation illustrated in Fig. 2. The 
vertical Y axis length is 10 µm. The Z axis has ticks at 10 µm 
intervals.
_________________________________________________



forward swimming velocity increases. The velocity would 
asymptotically approach a limit as the rotation is completely 
suppressed (dashed line in Fig. 4), but the spherical load also 
introduces a resistance to forward progression, so that the 
forward velocity eventually starts to decrease.

 This is not a new insight, but has been demonstrated 
in previous works [12]. The difference here is that in previous 
work, the flagellum was assumed to generate a perfect helix, 
with constant frequency, amplitude, and wavelength. The 
results in Fig. 4 were obtained with a more biologically realistic 
model, with the dynein motor parameters held constant, while 
the shape and frequency of the bending motion were allowed 
to adjust to the increased load. Additionally, the pattern of bend 
initiation at the basal end of the flagellum is more biologically 
realistic. However, these results are still based on the very 
approximate resistance coefficient hydrodynamics, in which 
the distortion of the local fluid velocities on the flagellum by 
the movement of the large spherical load is not considered.
 Fig. 4 also shows, for comparison, the effect of 
adding a spherical load at the basal end when the model is 
generating planar bending waves instead of helical bending 
waves. The planar bending waves were obtained with exactly 
the same model that generated helical bending waves, except 
for a change in the way that the dyneins are controlled. As 
shown, when a model is generating planar bending waves, it 
achieves its maximum forward swimming velocity when no 
load is present. The velocity decreases as the radius of the 
spherical load is increased. Again, this is not a new result; a 
somewhat similar comparison is shown by Chwang and Wu 
[12]. These new results in Fig. 4 are from biologically more 
realistic computations, but the general conclusion is the same.
 These computations also provide results for the power 
dissipation against the external viscous resistance. These 
results are shown in Fig. 5. Note that this is the power output 
of the flagellar model, not its power input or fuel consumption. 
Results for the power input, or ATP consumption, can be 
computed using the more complex models that incorporate 
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Fig. 5. Results of computer simulations using the model of Fig. 
2, with the addition of a spherical viscous load at the base of 
the flagellum. These curves show the calculated power output 
against the viscous resistances acting on the flagellum and the 
spherical load, for various values of spherical load radius.
_________________________________________________

Fig. 6. Results of computer simulations using the model of Fig. 
2, with the addition of a spherical viscous load at the base of 
the flagellum. These curves show the biological effectiveness 
of the swimming movements, calculated by dividing the 
forward swimming velocity by the viscous power output.
_________________________________________________

Fig. 7. Three dimensional view of the shape of the flagellar 
model at the end of a computation. Like the example in Fig. 2, 
except that a spherical head with a radius of 3 µm is placed at 
the base of the flagellum. The vertical Y axis length is 10 µm. 
The Z axis has ticks at 10 µm intervals.
_________________________________________________



kinetics for the individual dyneins, but are rather hypothetical 
because we have very little information about the parameters 
of dynein function.
 Fig. 6 shows the biological effectiveness of the 
movement, obtained by dividing the forward velocity by the 
power. This is not the hydrodynamic efficiency, which would 
be the power used to push the load through the viscous fluid, 
divided by the total viscous power. For something like a sperm 
cell, the effectiveness is a guide to how it should be designed 
to obtain maximum speed for a given power capability, or to 
obtain maximum distance from a given fuel supply.
 Fig. 7 shows the shape of the flagellum computed 
with a spherical load at the base of the flagellum, with a 
radius of 3 µm. More detailed results for this case are shown 
in Fig. 8. There is an obvious increase in wave number 
corresponding to the addition of almost one complete helical 
turn. This is accompanied by an increase in frequency. Most 
of these changes occur when the radius is increased from 1.0 

to 2.5 µm; these changes are reflected in the complexity of the 
effectiveness curve in this region (Fig. 6). 

Writhe and twist -- Closer inspection of Fig. 2 or Fig. 8 reveals 
that the wave number of the helical shape is greater than the 
wave number shown by the plots of curvature or shear angle 
along the length [2]. In each turn of the helix, the curvature 
vector must rotate by 2π radians around the axis of the helix. 
The major portion of this rotation of the curvature vector 
results from the torsion, defined as rotation of the curvature 
vector in the x,y plane of the local x,y,z coordinate system of 
the flagellum. There is an additional rotation of the local x,y,z 
coordinate system which accumulates as the flagellum is bent 
by the curvature. This additional rotation is the writhe of the 
curve, and is shown in Fig. 2 by the heavy black lines in the 
plots of rotation in the x,y plane. The method for calculating 
the rotation of the local x,y,z coordinate system is given in 
[9]. When a load is present at the base of the flagellum, an 

Fig. 8. Output from a computation similar to Fig. 2, except that a spherical head with a radius of 3 µm is placed at the base of the 
flagellum. The frequency is 47 cycles per sec._____________________________________________________________________________________
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Fig. 9. Output from computations similar to Fig. 5, with a spherical head with a radius of 3 µm at the base of the flagellum. In A, 
the elastic twist resistance has been increased by a factor of 100, to 440 × 108 pN nm2. The frequency is 48 cycles per sec. In B, 
the elastic twist resistance has been decreased by a factor of 10, to 0.44 ×108 pN2. The frequency is 42 cycles per sec. Note the 
change in the scale of the rotation plots, compared to Fig. 8.



additional rotation results from twisting of the flagellum, 
against its elastic twist resistance. In Fig. 8, this twist rotation 
is shown by the gray lines in the plots of rotation in the x,y 
plane. The black lines in these plots show the total rotation 
of the local x,y,z coordinate system, including both twist and 
writhe. These plots show that the total rotation increases when 
there is a load at the base of the flagellum. 

The role of twist is seen more clearly by varying the 
elastic twist resistance of the model. The value of elastic twist 
resistance used for Figs. 2-8, 4.4 × 108 pN nm2, was a standard 
value calculated on the assumption that the outer doublet 
microtubules have isotropic properties [10].  Computations 
(not shown) were performed with lower (2.2 × 108 pN nm2) 
and higher values (8.8 × 108 pN nm2).  There was little 
detectable difference between the plots of curvature and shear 
angle in the local coordinate system, at these values of elastic 
twist resistance. There were small but noticeable differences 
in total rotation and wave number. Results obtained with more 
extreme changes in elastic twist resistance are shown in Fig. 
9.  With a very high value of elastic twist resistance (Fig. 9A), 
twist is essentially eliminated, and all of the rotation of the 
local coordinate system results from writhe, as in the cases 
where there is no load at the base of the flagellum (Fig. 2). The 
differences between the wave shape and motion in Fig. 9A and 
Fig. 8 are small. There is a small increase in peak curvature, 
which causes an increased helix pitch angle and helix radius, 
leading to an increase of about 12% in swimming velocity. The 

normal value of twist resistance calculated by Hines and Blum 
[10] appears to be sufficient to eliminate deleterious effects 
of twist, and there would be no great benefit in evolving a 
greater twist resistance. With a very low value of elastic twist 
resistance (Fig. 9B), the total rotation of the local coordinate 
system increases from about 5 rad to about 12 rad, but the 
amount resulting from writhe falls from 2.5 rad to about 
1.25 rad. The increased total rotation increases the disparity 
between the wave numbers indicated by the plots of shear 
angle along the length and the wave number indicated by the 
helical shape. The helical radius is significantly reduced, and 
the swimming velocity falls to less than half the value obtained 
from the computation in Fig. 8.

Instability of planar bending at increased viscosity -- Fig. 10 
shows results from a computation with a model incorporating 
the appropriate control for production of planar bending 
waves, shown in Fig. 1B. This model is the same model used 
to produce the planar results in Figs. 4-6, with a spherical load 
radius of 1 µm. However, for Fig. 10, the external viscosity has 
been increased by a factor of 4. Planar bending is unstable under 
these conditions, and the bending changes to a complicated 
three-dimensional pattern that is only approximately helical. 
The pattern of dynein activation remains appropriate for planar 
bending, without converting to doublet metachronism. This 
conversion to a quasi-helical bending pattern was suppressed 
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Fig. 10. Output from a computation similar to those used to obtain data for planar bending, in Figs. 4 - 6, using the control 
protocol illustrated in Fig. 1B, and a spherical load with a radius of 1 µm at the base of the flagellum. In this case, the external 
viscosity is increased to 4 times the standard viscosity. The frequency is 41 cycles per sec._____________________________________________________________________________________



by increasing the elastic bending resistance in the x,z plane by 
a factor of 4, but was not suppressed by increasing this bending 
resistance by a factor of 2 (not shown). The frequency of the 
quasi-helical pattern was 41 cycles per sec, compared to 26.8 
cycles per sec for the planar pattern obtained with increased 
x,z plane bending resistance. In other examples, both left- and 
right-handed patterns were obtained.

IV. DISCUSSION

The modelling results shown in Figs. 2 to 6 are only for one 
model with a particular set of parameters. Results have been 
computed for models with a variety of parameters, and the 
results are qualitatively the same. The conclusion is always 
that, for something like a sperm cell with a small head, planar 
bending waves are better than helical bending waves. Again, 
this is not a new insight, but was realized by Sir James Gray 
more than 50 years ago [11]. What was not realized at that 
time is that it appears to be much easier for a flagellum to 
produce helical waves than planar waves. In models such as 
these, helical bending waves are the default result when each 
of the 9 outer doublets is identical, except for its position in 
the axonemal cross-section. The direction of the controlling 
curvature is the same for each doublet, when measured relative 
to the azimuthal position of each doublet (Fig. 1A). Each 
doublet is independent, except for its mechanical interactions 
with the rest of the axoneme. Since this is the simplest possible 
situation and result, something more complicated must have 
evolved to generate stable planar bending. The results for 
planar bending in Figs. 4-6 were obtained by redesigning the 
control system as shown in Fig. 1B. In this case, the directions 
of the controlling curvature for each outer doublet are 
different, so that doublets 1 to 5 are controlled by curvature in 
one direction, and doublets 6 to 9 are controlled by curvature 
in the opposite direction. This specification is easy to put into 
the computer model, and in some cases gives an excellent 
planar result. However, there is interesting experimental 
evidence that suggests that real flagella have not adopted this 
"hard-wired" solution.
 There is evidence for an important role for the "central 
pair" of microtubules and associated structures in the interior 
of the axoneme in regulating planar bending [13]. Most sperm 
flagella contain a central pair complex, and produce planar 
bending waves. Eel spermatozoa lack the central pair complex, 
and produce helical bending waves [14]. In horseshoe crabs, 
the central pair is present in the sperm flagella of the American 
species, which produce planar bending waves. The central 
pair is absent in the sperm flagella of the Asian species, which 
produce helical bending waves [15].
 One of the exceptions to this correlation has been 
provided by observations of tunicate and sea urchin sperm 
flagella. These flagella normally produce planar bending 
waves, but under certain high viscosity conditions have 
been observed to switch to helical bending [16, 17]. These 

observations suggest that if there is a mechanism that behaves 
like the control mechanism indicated in Fig. 1B, it must be able 
to be converted so that it operates like the control mechanism 
indicated in Fig. 1A under some extreme conditions. However, 
the result shown in Fig. 10 may indicate that this type of 
conversion is not required for the generation of quasi-helical 
bending waves. A detailed modelling of the results obtained 
with sea urchin sperm flagella at very high viscosities [17] will 
require more advanced methods for calculation of external 
viscous resistances, so that the interaction between closely 
spaced gyres of a helix can be incorporated.
 By capturing the head of a sea urchin spermatozoon 
in a micropipette, and vibrating the micropipette laterally, the 
frequency and bending plane of the flagellum can be altered 
[18]. Extensive rotation of the bending plane can be induced, 
apparently without rotation of the entire axoneme [19]. When 
the applied vibration is turned off, the bending plane rotates 
back towards its original orientation. These observations 
suggest that the plane of flagellar bending can be determined 
by mechanical factors. One possibility is that the plane of 
flagellar bending may correspond to the plane of least bending 
resistance. Early on, the correlation between the bending 
plane and the orientation of the central pair suggested that 
the direction of least bending resistance, and consequently the 
bending plane, was determined physically by the central pair 
microtubule structures. The mechanical effect of the central 
pair microtubules on the direction of least bending resistance 
is probably small [10], but many flagella have additional 
structural modifications that appear to enhance the anisotropy 
of bending resistance. 
 The possible role of bending resistance differences 
in determining planar bending has been examined by 
computer simulations with the model that is able to bend 
in three dimensions. These simulations demonstrate that 
for reasonable variations in bending resistance, a minimum 
bending resistance in one plane is not sufficient to establish 
planar bending [2]. It is still possible that a minimum bending 
resistance in one plane might determine the plane of bending 
if the flagellum is committed to planar bending, but a model 
that separates the commitment to planar bending from the 
determination of the bending plane has not been found. The 
control mechanism illustrated in Fig. 1B does not have this 
dualism. The simulations such as Fig. 10 also show that even 
the hard-wired control mechanism illustrated in Fig. 1B is 
unable to produce stable planar bending at higher than normal 
viscosities, unless it is assisted by large increases in twist 
resistance or out-of-plane bending resistances [2]. Evidence 
for such resistances is lacking. A much more dynamic control 
mechanism may be involved in maintaining planar bending.

V. CONCLUSION

 Because planar bending can easily produce higher 
swimming velocities than helical bending, there must have 



been strong selective pressures favoring the evolution of 
planar bending waves for sperm flagellar motility. Although, to 
us, planar bending waves seem simpler than three-dimensional 
bending waves, we can now recognize that biologically, the 
axoneme is an ideal design for generating helical bending 
waves by a very simple control mechanism. The capability 
for generating planar bending waves  that can remain stable 
even at increased viscosities appears to require much more 
sophisticated control mechanisms, which at present are 
unknown to us.

REFERENCES

[1] C. J. Brokaw, “Computer simulation of flagellar movement 
I. Demonstration of stable bend propagation and bend 
initiation by the sliding filament model” Biophys. J., vol. 
12, pp. 564-586, 1972.

[2] C. J. Brokaw, “Computer simulation of flagellar movement 
VIII: Coordination of dynein by local curvature control can 
generate helical bending waves”, Cell Motil. Cytoskel., vol. 
53, pp. 103-124, 2002.

[3] C. J. Brokaw and D. R. Rintala, “Computer simulation of 
flagellar movement III. Models incorporating cross-bridge 
kinetics”, J. Mechanochem. Cell Motil., vol. 3, pp. 77-86, 
1975.

[4] M. Hines and J. J. Blum, “Bend propagation in flagella. 
II. Incorporation of dynein cross-bridge kinetics into the 
equations of motion”, Biophys. J., vol. 25, pp. 421-442, 
1979.

[5] C. J. Brokaw, “Models for oscillation and bend propagation 
by flagella”, Symp. Soc. Exptl. Biol., vol. 35, pp. 313-338, 
1982.

[6]  C. J. Brokaw, “Computer simulation of flagellar movement 
VI. Simple curvature-controlled models are incompletely 
specified” Biophys. J., vol. 48, pp. 633-642, 1986.

[7]  J. Gray and G. J. Hancock, “The propulsion of sea-urchin 
spermatozoa”, J. Expt. Biol., vol. 32, pp. 802-814, 1955.

[8] J. Lighthill, “Flagellar hydrodynamics”, Soc. Ind. Appl. 
Math. Rev., vol. 18, pp. 161-230, 1976.

[9] C. J. Brokaw, (2002) "Torsion, twist, and writhe: the 
elementary geometry of axonemal bending in three 
dimensions". [Online] Available at: www.its.caltech.edu/
~brokawc/Suppl3D/TTWcomb.pdf

 [10] M. Hines and J. J. Blum, "Three-dimensional mechanics 
of eukaryotic flagella", Biophys. J., vol. 41, pp. 67-79, 
1983.

[11] J. Gray, "Undulatory propulsion", Quart. J. Microscop. 
Sci. , vol. 94, pp. 551-578, 1953.

[12] A. T. Chwang and T. Y. Wu, "A note on the helical 
movement of micro-organisms", Proc. Roy. Soc. Lond. B, 
vol. 178, pp. 327-346. 1971.

[13] C. K. Omoto, I. R. Gibbons, R. Kamiya, C. Shingyoji, K. 
Takahashi, and G. B. Witman, "Rotation of the central pair 
microtubules in eukaryotic flagella", Mol. Biol. Cell, vol. 
10, pp. 1-4, 1999.

[14] B. H. Gibbons, B. Baccetti, and I. R. Gibbons, "Live 
and reactivated motility in the 9+0 flagellum of Anguilla 
sperm", Cell Motil., vol. 5, pp. 333-350, 1985.

[15] S. Ishijima, K. Sekiguchi, and Y. Hiramoto, "Comparative 
study of the beat patterns of American and Asian horseshoe 
crab sperm: evidence for a role of the central pair complex 
in forming planar waveforms in flagella", Cell Motil. 
Cytoskel., vol. 9, pp. 264-270, 1988.

[16] C. J. Brokaw, "Effects of increased viscosity on the 
movements of some invertebrate sperm flagella", J. Exptl. 
Biol., vol. 45, pp. 113-139, 1966.

[17] D. M. Woolley and G. G. Vernon, "A study of helical and 
planar waves on sea urchin sperm flagella, with a theory 
of how they are generated", J. Exptl. Biol., vol. 204, pp. 
1333-1345, 2001.

[18] I. R. Gibbons, C. Shingyoji, A. Murakami, and K. 
Takahashi, "Spontaneous recovery after experimental 
manipulation of the plane of beat in sperm flagella", 
Nature, vol. 325, pp. 351-352, 1987.

[19] C. Shingyoji,J. Katada, K. Takahashi, and I. R. 
Gibbons,"Rotating the plane of imposed vibration can 
rotate the plane of flagellar beating in sea-urchin sperm 
without twisting the axoneme", J. Cell Sci., vol. 98, pp. 
175-181, 1991.


