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This paper presents a new solution to the vacuum Einstein field equations for the static external 
gravitational field of a toroidal singularity. This solution is unique among known toroidal solutions in that 
the singularity is locally cylindrically symmetric; near it the spacetime geometry becomes that of an infinite 
line mass ("Levi-Civita metric"). 

I. INTRODUCTION 

Infinitely long, cylindrically symmetric systems have 
played a useful role, since 1919, as tools for gaining in­
sight into general relativistic phenomena. For example, 
much of the pioneering work on gravitational-wave 
theory dealt with cylindrical systems; 1 and in recent 
years cylindrical systems have been used as a testing 
ground for ideas about highly nonspherical gravitational 
collapse. 2 

A key difficulty with all cylindrical analyses is the 
fact that spacetime is not asymptotically Minkowskiian 
far outside a cylindrical system: Just as the Newtonian 
potential of a cylinder diverges logarithmically at large 
radii (<I> = constx Inr) , so its general relativistic analog, 
'l1 ;;; t In I goo I, diverges logarithmically. As a result, the 
phySical interpretation of cylindrical spacetimes is often 
uncertain. 

One way to remedy this problem is to deal with sys­
tems that are locally cylindrical, but are confined to a 
finite region of space-e. g., needles (finite cylinders) 
and thin rings (toruses). Unfortunately, such systems 
are far more difficult to analyze than are infinitely long 
cylinders. The purpose of this paper is to present a 
tool that may be helpful in future analyses of bounded, 
locally cylindrical systems. That tool is a static, two­
parameter solution of the vacuum Einstein field equa­
tions representing the external gravitational field of a 
torus. Unlike other toroidal solutions, very near the 
ring singularity this one is cylindrically symmetric. 

II. THE SOLUTION IN GENERAL 

A. The Weyl formalism 

In presenting the new solution, we shall use Weyl's 
formalism 3 for axially symmetric, vacuum solutions of 
the Einstein field equations. The Weyl formalism is 
couched in the mathematical language of a flat ''back­
ground space" with cylindrical coordinates (p, z, cp) and 
with metric 

(1) 

Two gravitational potentials with axial symmetry reside 
in the background space: 1/J(p, z) and Y(p, z). They 
satisfy the field equations 

1/J ,PP + p-1,p ,P + 1/J,lflf= 0, 

y,p=p(1/J,p2 -1/J}), 

(2a) 

(2b) 
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Y,If = 2p1/J ,p1}i ,If' (2c) 

where commas denote partial derivatives. It is often 
useful to rewrite these field equations in terms of the 
gradient operator V and Laplacian V2 of the flat back­
ground space (1): 

a a 
V=e-+e-, pap Ifaz 

(2a') 

(2b') 

If 'il1/J makes an angle 80 with the radial (e p) direction, 

then 'ily makes an angle 280 with the radial direction 

(2c') 

Corresponding to any solution of the field equations 
(2) or (2') in the flat background space (1), there exists 
a static, axially symmetric solution of the vacuum 
Einstein field equations with the metric 

ds2 = _ exp(21/J) df + exp[2(y -1}i)] (dp2 + dz2) 

+ p2 exp(- 21/J) dcp2. (3) 

Different solutions are obtained by chOOSing different 
singular souces for 1/J in the background space (point 
sources, line sources, surface sources). If the sources 
are confined to a finite region of the background space, 
then both 1/J and y will approach constants as (P2 + Z2)1 /2 
- 00; those constants can be chosen zero without loss of 
generality, and the resulting physical spacetime (3) is 
asymptotically Minkowskiian. 

B. Toroidal solutions that are not locally cylindrical 

The easiest way to construct toroidal solutions is to 
choose, as the source of 1/J in the background space, a 
singularity at p = b, z = 0 (ring singularity around axis 
of symmetry). The simplest ring singularity is a pure 
"line monopole, " for which 4 

1/J = const x In[ (p - b)2 + Z2]1 /2 near singularity, 

Le., at[(p_b)2+ z2]1/2«b. (4) 

Unfortunately, when 1/J has this locally cylindrical form, 
y and the physical metric are not locally cylindrical near 
the singularity; Eq. (2c') forbids it. One cannot remedy 
this problem by any other choice for the ring source 
of 1/J (any superposition of line multipoles at p = b, Z = 0).5 
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This situation is analogous to the case of spherical 
symmetry: No type of point singularity in the back­
ground space (no superposition of point multipoles) can 
lead to a spherical physical metric; Eq. (2c') forbids it. 
To get a spherical metric (the Schwarzschild solution), 
one must choose as the source of ifJ a "line mass" on the 
axis of symmetry, with "mass per unit length" t (so 
ifJ = t lnp near it), and with finite length ~z = 2M 
= ("Schwarzschild radius"). 6 

C. The potentials 1/1 and 'Y for the new toroidal solution 

It turns out that the background-space source for a 
locally cylindrical, globally toroidal metric is even 
more peculiar than that for the Schwarzschild solution. 
The desired source is best understood by thinking of 
the background space as filled with an incompressible 
fluid that undergoes steady-state potential flow with po­
tential 1/1 and with momentum density Pov= VifJ (Po, not 
to be confused with p, is the mass density of the fluid). 
The fluid is created in a line singularity on the axis of 
symmetry (Fig. 1), and flows outward from there. The 
singularity has a finite height, z = 2a; and it pours out 
fluid at a constant rate m. Once created, the fluid does 
not freely expand into the background space. Rather, its 
flow is constrained by two solid disks that are attached 
to the ends of the source (z = ±a) and that have radii b 
(Fig. 1). 

By the time the flowing fluid gets far from the con­
straining diskS, r:; (p2 + Z2)1/2 » b, its flow has become 
nearly spherical with mass flow rate 

(5) 

and potentials 

1/I=-(m/41T)r-1
, r=O(m2r-2). (6) 

Hence, the physical spacetime metric (3) has the 
asymptotic form 
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FIG. 1. The flow of fluid in the (fictitious) background space. 
The flow lines (trajectories of Vl/I) are shown dashed. 
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FIG. 2, The toroidal topology of physical spacetime. The 
events P and/< are located, in coordinate space), on the inside 
faces of both the upper disk and the lower disk: ~ and 5 are 
located on both outside faces~The closed curvesCj andC2 are 
topologically linked through the ring singularity; the singularity 
prevents them from being contracted to a point. The closed 
curvesC3 C 4 do not link the singularity; they can be contracted 
to a point. 

ds2 = _ [1- (m/21T)r- 1
] dt2 + [1 + (m/21T)r-1

] 

X (dp2 + dz2 + p2 dcf}), (7) 

from which we can read off the total mass-energy M of 
the gravitating system in terms of the mass flow rate 
m in the (fictitious) background metric: 

M =m/41T. (8) 

Near the singular source the flow is in the e. direc­
tion (see Fig. 1), with 

41TM ==m = (2a)(21Tp)ifJ •• 

and thus with 

(9) 

ifJ==(M/a)lnp+const at /z/<a, p«max(a,b). 

(lOa) 
The solution for ifJ can be summarized mathematically 

as follows: (i) 1/1 has the asymptotic form (lOa) near the 
singularity; (ii) 1/1 satisfies the boundary conditions 

ifJ •• == 0 at z == ± a, for 0 < P < b (lOb) 

("fluid flow constrained by disk"); (iii) everywhere ifJ 
satisfies 

V 2ljJ=O (lOc) 
("potential flow"); (iv) ifJ vanishes at spatial infinity 

ifJ == -M/r as r== (p2 + Z2)1/2 - 00, (lOd) 

The corresponding solution for r can be summarized 
by: (v) y satisfies Eqso (2b, c) everywhere; and (vi) r 
vanishes at spatial infinity. 

D. Topology of the new solution 

The above discussion fixes the metric coefficients of 
phYSical spacetime (Eq. (3)] but does not determine the 
topology. The topology is fixed by two identifications: 
(i) the outside face of the upper disk consists of the 
same events as the outside face of the lower disk: 

lim (t, p, z = a + e, cf» is same event as 
• .O(J 

lim (t,p,z=-a-e, cf» 
,.o(J 
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(ii) the inside face of the upper disk consists of the same 
events as the inside face of the lower disk: 

lim (t, p, Z = a - E, </» is same event as 
,~o 

lim (t, p, z= - a +E, </» 
.~ 

ifO<p~b. 

(llb) 

These two identifications endow the singularity of physi­
cal spacetime with a toroidal topology; see Fig. 2. 

E. Local cylindrical symmetry near the singularity 

Near the singularity, i. e., for p «max(a, b), wand y 
have the form 

<{I = (M/a) lnp + wo' 

y = (M/a)2lnp + Yo, Wo and Yo constant; (12) 

cf. Eqs. (lOa) and (2b). The corresponding spacetime 
metric (3) is 

ds2 = _ exp(2<{1o) p2M 14 dt2 

+ exp(- 2Wo) [exp(2yo) p2(M lal(M la - 1 l(dp2 + dz2) 

+ p2 - 2M I. d</>2]. (13a) 

In this region of spacetime, Z is a periodic coordinate 
that encircles the singularity 

- a ~ Z ~ + a, z = - a is same set of events as z = + a, 

(13b) 

and cP is a "longitudinal coordinate" stretching along 
the singularity. Since the metric coefficients depend only 
on the radial coordinate p, the geometry is cylindrically 
symmetric. In fact, except for topological closure of 
the ring (periodicity of longitudinal coordinate cp), the 
spacetime geometry (13) is that of an infinitely long, 
cylindrically symmetric line mass (Levi-Civita' s '7 

solution of the Einstein field equations). 

F. Free parameters in the solution 

At first sight there are three free parameters in the 
solution: M, b, and a. However, for arbitrary choices 
of M, b, a there exists a singularity at the common edge 
of the disks (p = b, Z = ± a). One can see this as follows: 
The field equation (lOc) and boundary condition (lOb) 
guarantee that near (p = b, Z = ± a) I/! has the form 

<{I =A + B r1/2 cose/2, (14a) 

where rand 8 are polar coordinates centered on the 
edge of the disks (Fig. 3): 

r=[(p - b)2 + (z - a)2]l/2, e = tan-l [(a- z)/(b -p)] 

near (b, a); 
(15) 

r= [(p - b)2 + (z + a)2]l/2, e=tan-1[( - a - z)/(b - p») + 217 

near (b, - a). 

The form of y near the edge of the disks, as fixed by 
Eqs. (14a) and (2b', c /), is 

(14b) 
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The constants A, B, C are unique functions of M, b, a­
functions which one can determine by fully solving Eqs. 
(10) and (2). Expressions (14) and (15), when inserted 
into the physical metric (3), yield 

ds2 = _ exp(2A)[1 + 2Brl/2 cos(8/2)] df + exp(- 2A) 

x [1- 2Brl/2 cos(e/211 

x (exp(2C)r-B2b /2(dr 2 + r2 dlP) + (b - rcos6)2 dIj>2]. 

(16) 

This metric with its square roots and half angles is ugly. 
However, the coordinate transformation 

R=;:l/2, e=e/2 (so e runs from 0 to 211") (17) 

brings it into the nicer form 

ds 2 = _ exp(2A)[1 + 2BR cose]df + exp(- 2A)[1- 2BR cose] 

x [4 exp(2C)R2- B2b(dR2 + R2 def) + (b - R2 cos2e)2 dcp2]. 

(18) 

The spacetime geometry described by this metric is 
perfectly well behaved if B2 = 2/b; otherwise it possesses 
a physical singularity at R =r=O-i. e., on the edge of 
the disks. 

Thus, by demanding that spacetime be nonsingular at 
the common edge of the disks, we impose the constraint 

[B(M, b, a)]2 = 2/b (19) 

and thereby reduce the number of free parameters from 
3 to 2. It is easy to verify that in this case spacetime is 
completely free of singularities, except for the locally 
cylindrical ring source at p = 0, I z I < ao 

III. THE SPECIAL CASE OF A THIN-RING TORUS 

We now specialize our solution to the case 

b»a (20) 

i. e., (radius of constraining disks in background space) 
»(separation between disks). The spacetime geometry 
in this special case will turn out to be that of a thin-ring 
torus with (total mass-energy) =M «(radius of ring) 
= b; see Sec. IVA, below, 

In this special case we shall solve explicitly but ap­
prOXimately for the metric coefficients. The errors in 
our solution will vanish in the limit a/b- O. Our solu­
tion will have different forms in three different regions 
(see Fig. 4): 

Region I: [(p _ b)2 + Z2]1 /2;::: (ab)1/2 always, and 

Izl >a when p<b, (21a) 

Region II: [(p _ b)2+ Z2)1/2:'S (ab)1/2 (21b) 

Region III: Izl<a, (b_p)~(ab)1/2. (21c) 

Note that Regions I and n overlap and Regions nand m 
overlap. 

A. Region I 

Region I is the "external region" that lies outside the 
constraining disks and is bounded away from their edges. 
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FIG. 3. Various coordinate systems used in the background 
space. Note that 

p=rsinB=b+r cos9 =b-r cosO, 

z=r cosB=r sine 

{ 
a-r sinO 

'" -a-rsinO 
for z>O, 0<9<21r, 
for z< 0, 21r<0<41r. 

In solving for l/J and y here, we pretend that the disks 
are fitted tightly together so that the "fluid" in the back­
ground space emerges from a ring singularity at p = b, 
z =0. This approximation produces 

(fractional errors in 1/!)$a/(ab)1/2=(a/b)1/2, 

(fractional errors in y):5 (a/b)I/2(ln(a/b)1/2]2. 
(22) 

The solution to the potential-flow equation V21/! = 0 with 
a ring source at p = b, Z = 0 and with asymptotic form 
(lOd) is 

~ 
4bp )1/2 k= - (p + b)2 + Z2 , (23a) 

(23b) 

=:~ In(-r) [l+o(t)] ifr=[(p_b)2+Z2]l/2«b. 

(23c) 

Here K(k) is the complete elliptic function. The corre­
sponding solution to Eq. (2) for y is a 

~2k4 • • 
Y = 47r2bp [-~ + 4(1- k 2)KK + 4k2(1- k 2)K2] 

(24a) 

(24b) 

~2 {cose [1 I, b)2]} 
=-1T2b ~+o b ~nr (24c) 

The coordinates (r, 8) used near infinity and (r, ~) used 
near the ring are shown in Fig. 3. The metric is ob­
tained by inserting expressions (23) and (24) into Eq. (3). 
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B. Region II 

Region II is the "intermediate region" near the com­
mon edge of the constraining disks. When solving for 
I/! and y in Region II we shall pretend that the edges of 
the disks in background space are straight rather than 
curved; 1. e., we shall replace the axially-symmetric 
potential-flow equation I/!,pp + p-ll/!,p + I/!, .. = 0 by the plane­
symmetric potential-flow equation 

1/!,pp + l/J.n=O; (25a) 

and we shall set p = b in the derivatives of y: 

Y.p=b(l/J}-l/J.6 2), y.6=2b1/!.p1/!.6· 

In dOing so we make 

(25b) 

(fractional errors in l/J)$(ab)1/2/b=(a/b)1/2, 

(fractional errors in y):5 (a/b)1/2[ln(a/b)1/2]2. 
(26) 

Equation (25a) for I/! must be solved subject to the 
"flow-around-the-edge-of-the-disks" constraint (lOb). 
The solution can be found by using the conformal trans­
formation 

p +iz =b + (a/1T)[1+u +iv + exp(u + iv)], Iv I ~1T. 
(27) 

More specifically, in terms of the function u(p, z) the 
solution is 

I/! = (~/1Tb)[u -In(81Tb/a)] (28a) 

if r »a and I I b-p 
z > Ib_p1a 

(28b) 

if r«a (28c) 

=-~ (bb- P) _~ [In(8;b) +l+o(expl-1T(b-p)/a]~ 

if (b-p)>>a, Izl<a. (28d) 

See Fig. 3 for definitions of the coordinates r, 8, r, e. 
By comparing Eq. (28c) with Eq. (14a), we obtain the 

explicit form of condition (19), which makes the physical 
geometry nonsingular at the common edge of the disks: 

z 

-p 

FIG. 4. Three 
regions, I, II, 
III, in which 
three different 
approximate so­
lutions are valid 
for the case of a 
thin-ring torus. 
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B2=2/b~M2=1Tab. (29) 

Henceforth we shall regard M and b as independent 
variables, and a as the algebraic combination 

a =M2/1Tb. (30) 

The solution for y can be obtained from Eq. (28) for ~ 
by integrating Eq. (25b) and imposing the boundary con­
dition (24c) at the outer edge of Region II: 

')1= M2 Re[ln( exp(u+iv} )] 
1Tab 1 + exp(u + iv} 

(31a) 

(31b) 

... -- In -- +0 M2 [ (a) (rl/2) ] 
21Tab 21Tr ~ 

ifr«a (31c) 

ifb-p»a, Izl<a. (31d) 

C. Region III 

Region III is the "inner region" between the disks and 
bounded away from their edges. In solving for ~ and ')I 

here we ignore the existence of the edges, thereby 
making 

(fractional errors in wand y):5 a/(ba)I/2== (a/b)l/2 

(32) 
and thereby obtaining the cylindrically symmetric ex­
pressions (12). The constants 1/10 and Yo in those ex­
pressions are fixed by matching onto Region IT [Eqs. 
(28d) and (31d)]: 

w == (MIa) In{p/b) - (MI1Tb) In(81Tbla), 

y == (M/a)2ln(p/b) _M2 /1Tab. 

IV. DISCUSSION OF THE SOLUTION 

A. The vacuum solution 

(33) 

(34) 

The asymptotically flat region of spacetime (the re­
gion of red shifts small compared to unity and of nearly 
globally Minkowski geometry) is that region in which 
11/1 I «1 and I y I «1. For the thin-ring case (Sec. III, 
where M2 = 1Tab and a «b) all of Region I is asymptotical­
ly flat; the strong-field regime begins in Region II. This 
allows one to perform Newtonian analyses in Region I, 
using ~ = ~ In I goo I as the Newtonian gravitational po­
tential. straightforward examination of Eq. (23) shows 
that a Newtonian observer in Region I will regard the 
source as a thin ring of total mass-energy M and ring 
radius b. 

Notice that the relation M2 := 1Tab can be rewritten as 

2M = ("Schwarzschild radius" of ring) _ (~1Ta) 1/2 
b ("actual radius" of ring) - \. b 

- (fractional errors in thin-ring formulas). (35) 
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This says that, for rings of fixed mass M and ever de­
creasing ring radius b, the "thin-ring approximation" 
a «b breaks down when b becomes of order the 
Schwarz schild radius 2M of the ring. In this limit the 
general solution of Sec. II remains valid, but the thin­
ring formulas of Sec. III fail. 

B. The join to an interior solution 

The author's PhD thesis 2 develops mathematical tools 
for the analysis of infinitely long, cylindrically sym­
metric systems. Those tools should be applicable, with 
fractional errors $0[(a/b)1/2]=0[M/b], in Region III 
of our thin-ring toroidal solution. One tool of particular 
interest is the following theorem, which can be inferred 
from Sec. 8-M of the author's thesis: 

Consider an infinitely long, nonsingular material 
cylinder which is momentarily static and which has, as 
its external gravitational field, the Levi-Civita line­
mass metric with "spacetime character" D(+). 9,10 De­
mand that the cylinder have nonnegative energy density 
TOO on its hypersurface of time symmetry. Then at the 
surface of the cylinder (point where T"s_ 0) the "C­
energy" scalar U must be positive. 10,11 

In the D (+) Levi-Civita metric, U is - 00 at the singu­
larity and increases monotonically as one moves radial­
lyoutward. At some radius Pc, U becomes zero; and 
thereafter it continues to increase, approaching + % as 
p -00. The above theorem says that any material cy­
linder with TOo> 0, which generates the D(+) Levi-Civita 
metric, must have its surface outside the "critical 
radius" Pc at which U = O. 

Region III of the thin-ring toroidal solution is endowed 
with a Levi-Civita metric of character D (+). The C­
energy scalar at radius p can be calculated by combining 
that metric [Eqs. (3), (33), (34)] with Eq. (7.8) of the 
author's thesis 10; the result is 

U=-Hl-(b/p)2]. 

Thus, the critical radius is 

Pc=b. 

(36) 

(37) 

But this radius lies outside Region Ill-i. e., it is so 
large that the line element is already showing noticeable 
deviations from that of Levi-Civita! Thus, one is forced 
to conclude that any nonsingular, momentarily (or 
permanently) static torus which generates the thin-ring 
metric and which has nonnegative energy density must 
have its surface outside Region III-i. e., in Region II 
or Region I. 

This surprising (and, to me, unhappy) result is 
intimately tied to the fact that the thin-ring toroidal 
metric of this paper has only two independent param­
eters. Since the general Levi-Civita solution has two 
free parameters ("mass parameter" and "canonical 
radius"),12 one might hope to construct a locally cy­
lindrical, globally torOidal vacuum metric with three 
independent parameters-two characterizing the Levi­
Civita singularity and one characterizing the radius of 
the ring. By adjusting one of the singularity parameters 
appropriately, one would then be able to build interior 
solutions with given M and b and with arbitrarily small 
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surface radii. However, such solutions will not be 
possible unless one succeeds in adding a new free 
parameter to the two-parameter vacuum metric of this 
paper. I have tried, and failed. 
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