
Model Class SelectionModel Class Selection
Given: Data      from system and set      of 

candidate model classes 

where each model class      defines a set 
of possible predictive models for system:

& a probability model                 over this set
Find: Most plausible model class
Goal: Selection of level of model complexity
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Model Class SelectionModel Class Selection

Most Plausible Model Class Based 
on Data
Maximize:

Higher level of robustness: Can 
include predictions of all model classes  
(model class averaging):
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Model Class SelectionModel Class Selection

Evaluation of Model Class Probability
Bayes Theorem:
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where denominator is chosen to normalize
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Evaluation of EvidenceEvaluation of Evidence

Total Probability Theorem gives evidence:
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Can use asymptotic expansion about MPV

2
ˆ ˆ( | , ) ( | )

( | ) (2 )
ˆdet ( )

( ) ln ( | , ) ( | )

N j
j j j j

j
j j

j j j j j j

p D M p M
p D M

p D M p M

≈ π

= −∇∇

θ θ

H θ

H θ θ θ



Model Class Selection using Evidence Model Class Selection using Evidence 
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= log likelihood + log Ockham factor

= Data fit + Bias against parameterization

- Gives a quantitative Principle of Parsimony

• Assume all model classes equally plausible 
a priori, then plausibility of each model class   

is ranked by its log evidence:jM



Bias Against ParameterizationBias Against Parameterization

Log Ockham Factor     for     : 
For a large number N of data points in D, 
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where                 are the prior and principal posterior 
variances for       and               are the prior and 
posterior most probable values of  
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So Log Ockham factor decreases with number of 
model  parameters
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Interpretation using information theoryInterpretation using information theory

From asymptotics for large amount 
of data N and globally identifiable 
model classes (Beck and Yuen 2004):
Log evidence = [Data fit of optimal 
model] – [Information gain about     in D]

Recently generalized this result to any 
model class
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Comparison with AIC and BICComparison with AIC and BIC

Bayesian model class selection criterion
Maximize                            w.r.t.       , or equivalently 
(from asymptotic result):
log evidence = log likelihood + log Ockham factor
i.e.
Akaike (1974)
Maximize: AIC =
Akaike (1976), Schwarz (1978)
Maximize: BIC =  
(agrees with above criterion for large N except for 
terms of O(1) )
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Evaluation of LikelihoodEvaluation of Likelihood

Likelihood function p(D |    ,      ) is  
based on prediction-error model:
Predicted response 
= (Stochastic) response of model

+ Prediction error

• In examples, prediction error    modeled 
as zero-mean Gaussian discrete white 
noise with covariance matrix     I           
(i.e. maximum information entropy PDF)
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Evaluation of LikelihoodEvaluation of Likelihood
Details for dynamical models with input-
output measurements:
e.g. Beck & Katafygiotis: “Updating models and their 
uncertainties. I: Bayesian statistical framework”,      
J. Engng Mech., April 1998. 
Details for output-only measurements:
e.g. Yuen and Beck: “Updating properties of 
nonlinear dynamical systems with uncertain input”,  
J. Engng Mech., Jan. 2003.



Example 1: SDOF Hysteretic Oscillator Example 1: SDOF Hysteretic Oscillator 
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• = bilinear hysteretic restoring force             

• = scaled 1940 El Centro earthquake record

• Simulated noise (5% of rms simulated displacement)

• Prediction error      modeled as zero-mean Gaussian
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i.e. predicted displacement at time step n, 
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Hysteretic forceHysteretic force--displacement behaviordisplacement behavior



Example 1: Choice of Model ClassesExample 1: Choice of Model Classes

Model Class 1 (M1 - 3 parameters)
Linear oscillators with damping coefficient 
c>0, stiffness k1 > 0 and prediction-error 
variance
Model Class 2 (M2 - 3 parameters)
Elasto-plastic oscillators (i.e. k2 = 0 ) with 
stiffness  k1 > 0, yield displacement      and 
prediction-error variance 
Independent uniform prior distributions on all 
parameters
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Example 1: ConclusionsExample 1: Conclusions

Class of linear models (M1) much more 
probable than elasto-plastic models 
(M2) for lower level excitation, but other 
way around for higher levels
Illustrates an important point: there is 
no exact class of models for a real 
system and the most probable class 
may depend on the excitation level.



Example 2: Modal Model for Example 2: Modal Model for 
1010--Story Linear Shear BuildingStory Linear Shear Building

Examine most plausible number of modes 
based on measured accelerations at the roof 
during base excitation
Excitation not measured; modeled as 
stationary Gaussian white noise with 
uncertain spectral intensity
Other model parameters: Modal frequencies, 
modal damping ratios and prediction-error 
variance



Example 2: Most Probable FrequenciesExample 2: Most Probable Frequencies



Example 2: Evidence for ModelExample 2: Evidence for Model ClassesClasses

Number of modes | Log likelihood | Log Ockham factor | Log evidence 

1 1894 -43.7 1850
2 2251 -56.4 2195
3 2511 -68.9 2442
4 2619 -69.2 2550
5 2682 -75.9 2606
6 2714 -91.2 2623 (& BIC)
7 2723 -109 2614
8 2723 -121 2602 (AIC)

Probability of model class with 6 modes completely 
dominates, e.g. next class has probability 0.0002



Example 2: Frequency Response Fit for Example 2: Frequency Response Fit for 
Most Probable 6Most Probable 6--mode Model mode Model 



Concluding RemarksConcluding Remarks

The Bayesian probabilistic approach for 
model class selection is generally applicable; 
illustrated here for linear & non-linear 
dynamical systems with input-output or 
output-only dynamic data
The most plausible class of models is the 
one with the maximum probability (or 
evidence) based on the data
Rather than taking most probable, can use all 
classes by model class averaging (Total Prob.)




