Model Class Selection

Given: Data D from system and set M of candidate model classes

 $M = \{M_1, M_2, ..., M_J\}$

where each model class M_j defines a set of possible predictive models for system: $\{ p(Y_n | U_n, \theta_j) : \theta_j \in \Theta_j \subset \mathbb{R}^{N_j} \}$

& a probability model $p(\theta_i | M_i)$ over this set

- Find: Most plausible model class
- Goal: Selection of level of model complexity

Model Class Selection

Most Plausible Model Class Based on Data D Prior info Maximize: $P(M_i \mid D, M)$ over all j Higher level of robustness: Can include predictions of all model classes (model class averaging): $p(Y_n | U_n, D, M) = \sum_{j=1}^{J} p(Y_n | U_n, D, M_j) P(M_j | D, M)$ i=1

Model Class Selection

Evaluation of Model Class Probability Bayes Theorem:

where denominator is chosen to normalize $P(M_j | D, M)$ over j = 1, ..., J

Evaluation of Evidence

- Total Probability Theorem gives evidence: $p(D \mid M_j) = \int_{\Theta_j} p(D \mid \Theta_j, M_j) p(\Theta_j \mid M_j) d\Theta_j$
- Can use asymptotic expansion about MPV

$$p(D \mid M_j) \approx (2\pi)^{\frac{N_j}{2}} \frac{p(D \mid \hat{\boldsymbol{\theta}}_j, M_j) p(\hat{\boldsymbol{\theta}}_j \mid M_j)}{\sqrt{\det \mathbf{H}_j(\hat{\boldsymbol{\theta}}_j)}}$$

 $\mathbf{H}_{j}(\boldsymbol{\theta}_{j}) = -\nabla \nabla \ln p(D \mid \boldsymbol{\theta}_{j}, \boldsymbol{M}_{j}) p(\boldsymbol{\theta}_{j} \mid \boldsymbol{M}_{j})$

Model Class Selection using Evidence

 Assume all model classes equally plausible a priori, then plausibility of each model class M_i is ranked by its **log evidence**:

 $\ln p(D|M_{j}) \approx \ln p(D|\hat{\theta}_{j}, M_{j}) + \\ + \left[\ln p(\hat{\theta}_{j} | M_{j}) - \frac{1}{2} \ln \det \mathbf{H}_{j}(\hat{\theta}_{j}) + \frac{N_{j}}{2} \ln(2\pi) \right] \\ = \log \text{ likelihood } + \log \text{ Ockham factor} \\ = \text{ Data fit } + \text{ Bias against parameterization} \\ - \text{ Gives a quantitative Principle of Parsimony} \end{cases}$

Bias Against Parameterization

• Log Ockham Factor β_i for M_i :

For a large number N of data points in D,

$$\beta_{j} \approx -\sum_{i=1}^{N_{j}} \ln \frac{\rho_{j,i}}{\sigma_{j,i}} - \frac{1}{2} \sum_{j=1}^{N_{j}} \left(\frac{\hat{\theta}_{j,i} - \overline{\theta}_{j,i}}{\rho_{j,i}} \right)^{2}$$

where $\rho_{j,i,}^2 \sigma_{j,i}^2$ are the prior and principal posterior variances for θ_j and $\overline{\theta}_{j,i,} \hat{\theta}_{j,i}$ are the prior and posterior most probable values of $\theta_{j,i}$

 $\Rightarrow \beta_j = -\frac{1}{2}N_j \ln N + O(1) \quad \text{(for large } N\text{)}$ So Log Ockham factor decreases with number of model parameters

Interpretation using information theory

• From asymptotics for large amount of data *N* and globally identifiable model classes (Beck and Yuen 2004): Log evidence = [Data fit of optimal model] – [Information gain about θ_i in *D*]

Recently generalized this result to any model class

Comparison with AIC and BIC

 Bayesian model class selection criterion Maximize $\ln P(M_j | D, M_j)$ w.r.t. M_j , or equivalently (from asymptotic result): log evidence = log likelihood + log Ockham factor i.e. $\ln p(D | M_j) = \ln p(D | \hat{\theta}_j, M_j) + \beta_j$ Akaike (1974) Maximize: **AIC** = $\ln p(D | \hat{\theta}_j, M_j) - N_j$ • Akaike (1976), Schwarz (1978) Maximize: BIC = $\ln p(D|\hat{\theta}_j, M_j) - \frac{N_j}{2} \ln N$ (agrees with above criterion for large N except for terms of O(1))

Evaluation of Likelihood

- Likelihood function $p(D | \theta_j, M_j)$ is based on **prediction-error model**:
 - Predicted response
 - = (Stochastic) response of model θ_j
 - + Prediction error
- In examples, prediction error η modeled as zero-mean Gaussian discrete white noise with covariance matrix σ_{η}^2 I (i.e. maximum information entropy PDF)

Evaluation of Likelihood

Details for dynamical models with inputoutput measurements:

e.g. Beck & Katafygiotis: "Updating models and their uncertainties. I: Bayesian statistical framework", *J. Engng Mech.*, April 1998.

• Details for output-only measurements:

e.g. Yuen and Beck: "Updating properties of nonlinear dynamical systems with uncertain input", *J. Engng Mech.*, Jan. 2003.

Example 1: SDOF Hysteretic Oscillator

 $m\ddot{x} + c\dot{x} + f_s(x;k_1,k_2,x_y) = f(t)$

- f_s = bilinear hysteretic restoring force
- f = scaled 1940 EI Centro earthquake record
- Simulated noise (5% of rms simulated displacement)

• Prediction error η modeled as zero-mean Gaussian discrete white noise with variance σ_{η}^2 i.e. predicted displacement at time step n,

$$\hat{x}(n) = x(n) + \eta(n)$$

Hysteretic force-displacement behavior

Example 1: Choice of Model Classes

- Model Class 1 (M_1 3 parameters) Linear oscillators with damping coefficient c>0, stiffness k₁ > 0 and prediction-error variance σ_{η}^2
- **Model Class 2** (M_2 3 parameters) Elasto-plastic oscillators (i.e. $k_2 = 0$) with stiffness $k_1 > 0$, yield displacement x_y and prediction-error variance σ_η^2
 - Independent uniform prior distributions on all parameters

Example 1: Conclusions

- Class of linear models (M₁) much more probable than elasto-plastic models
 (M₂) for lower level excitation, but other way around for higher levels
- Illustrates an important point: there is no exact class of models for a real system and the most probable class may depend on the excitation level.

Example 2: Modal Model for 10-Story Linear Shear Building

- Examine most plausible number of modes based on measured accelerations at the roof during base excitation
- Excitation not measured; modeled as stationary Gaussian white noise with uncertain spectral intensity
- Other model parameters: Modal frequencies, modal damping ratios and prediction-error variance

Example 2: Most Probable Frequencies

Number of modes	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	ω_7	ω_8
Exact	5.789	17.24	28.30	38.73	48.30	56.78	64.00	69.79
1	6.946							
2	5.799	20.68						
3	5.814	17.16	33.96					
4	5.842	17.18	27.94	43.82				
5	5.848	17.19	27.97	38.06	50.58			
6	5.849	17.19	27.97	38.09	48.10	56.72		
7	5.849	17.19	27.97	38.09	48.13	56.34	64.18	
8	5.849	17.19	27.97	38.09	48.13	56.34	64.18	69.41

Example 2: Evidence for Model Classes

Number of modes | Log likelihood | Log Ockham factor | Log evidence

1894	-43.7	1850
2251	-56.4	2195
2511	-68.9	2442
2619	-69.2	2550
2682	-75.9	2606
2714	-91.2	2623 (& BIC)
2723	-109	2614
2723	-121	2602 (AIC)

Probability of model class with 6 modes completely dominates, e.g. next class has probability 0.0002

Example 2: Frequency Response Fit for Most Probable 6-mode Model

Concluding Remarks

- The Bayesian probabilistic approach for model class selection is generally applicable; illustrated here for linear & non-linear dynamical systems with input-output or output-only dynamic data
- The most plausible class of models is the one with the maximum probability (or evidence) based on the data
- Rather than taking most probable, can use all classes by model class averaging (Total Prob.)

