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PROBABILITY LOGIC: Part 2 

Axioms for Probability Logic 

Based on general considerations, we derived axioms for: 

( | )P b a =  measure of the plausibility of proposition b conditional on the information 
stated in proposition a. 

For propositions a, b and c, these are:  

P1: ( | ) 0P b a ≥  

P2: ( | & ) 1P b a b =  

P3: ( | ) (~ | ) 1P b a P b a+ =  

P4: ( & | ) ( | & ) ( | )P c b a P c b a P b a=  

Properties Derived from Axioms P1-P4 

There are three properties that we used when deriving the axioms for probability logic 
that can be derived from Axioms P1-P4 and so they were not included in the list of 
axioms.  We state and prove them in P5: 
 
P5: (a) (~ | & ) 0,  (b) ( | ) [0,1]P b a b P b a= ∈ , (c) ( | & ( )) ( | & ( ))P b a b c P c a b c⇒ ≤ ⇒  
 
Proof:  
 
(a) Follows from P3 with ( & )a a b→  & then using P2 
 
(b) Follows from P3 & P1: ( | ) 1 (~ | ) 1P b a P b a= − ≤  
 
(c) Let & ( )d a b c= ⇒ , then:  

( | & ) ( | ) ( & | )                                (from P4)
                               ( & ( ) | )
                               ( | & ( )) ( | )   (from P4)
                           

P b d c P c d P b c d
P b b c d
P b d b c P b c d

=
= ⇒
= ⇒ ⇒

    ( | )                                      (from P2)P b d=

 

where we have used & & ( )b c b b c≡ ⇒ . Finally, by P5(b): ( | & ) 1P b d c ≤  and so: 
( | ) ( | )P b d P c d≤ . 
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P6: (a) (  or | ) ( | ) ( | ) ( & | )P c b a P c a P b a P c b a= + −  
 
 (b) (  or | ) ( | ) ( | )P c b a P c a P b a= +   

if a implies that ( & )c b  is false, i.e. b  and c  cannot both be true and so are 
mutually exclusive. 

 
 (c) If proposition a implies that only one of the propositions 1 2, , , Nb b b…  can be true, 

i.e. they are mutually exclusive, then: 

1 2
1

(  or  or  or | ) ( | )
N

N n
n

P b b b a P b a
=

= ∑…  

If, in addition, proposition a implies that one must be true:  
1

1 ( | )
N

n
n

P b a
=

= ∑  

Proof:  
 
(a) From De Morgan’s Law:  or ~ (~ & ~ ),c b c b≡  
so:  (  or | ) (~ (~ & ~ ) | )P c b a P c b a=  

1 (~ & ~ | )                         (from P3)P c b a= −  
1 (~ |~ & ) (~ | )           (from P4)P c b a P b a= −  
1 [1 ( |~ & )] (~ | )      (from P3)P c b a P b a= − −  
1 (~ | ) ( & ~ | )          (from P4)P b a P c b a= − +  

( | ) (~ | & ) ( | )     (from P3, P4)P b a P b c a P c a= +  
( | ) [1 ( | & )] ( | )  (from P3)P b a P b c a P c a= + −  
( | ) ( | ) ( & | )     (from P4)P b a P c a P b c a= + −  

(b) Follows immediately since ( & | ) 0P c b a =  
 
(c) Exercise: Use Principle of Mathematical Induction. 
 

P7: If proposition a implies that one, and only one, of the propositions 1, , Nb b…  is true, 
then:  

 (a) 
1

( | ) ( & | )
N

n
n

P c a P c b a
=

= ∑  [Marginalization Theorem] 

 (b) 
1

( | ) ( | & ) ( | )
N

n n
n

P c a P c b a P b a
=

= ∑  [Total Probability Theorem] 

 (c)  For k=1, …, N: 

1

( | & ) ( | )( | & )
( | & ) ( | )

k k
k N

n n
n

P c b a P b aP b c a
P c b a P b a

=

=
∑

 [Bayes Theorem] 
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Proof: 

(a) Let 1 2 or  or  or Nb b b b… , then since a implies b  is true, &a a b= , so from P2: 
( | ) 1P b a =  and ( & | ) ( | & ) ( | ) ( | )P c b a P c b a P b a P c a= = , so 

1 1( | ) ( & (  or  or ) | ) (( & ) or  or ( & ) | )N NP c a P c b b a P c b c b a= =… …  

Since a  implies that nb  and mb  cannot both be true if m n≠ , it must be that 
( & ) & ( & ) & ( & )n m n mc b c b c b b=  is false, i.e. ( & )nc b  and ( & )mc b  are mutually 

exclusive.  From 6 ( )P c  with 
1

& : ( | ) ( & | )
N

n n n
n

b c b P c a P c b a
=

→ = ∑  

(b) Directly from (a) using P4. 

 

(c) From (b), the denominator on RHS is ( | )P c a , so we need only show that 
( | & ) ( | ) ( | & ) ( | )k k kP b c a P c a P c b a P b a= . This follows from P4 since both are equal 

to ( & | ) ( & | )k kP b c a P c b a= . 
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Derivation of Kolmogorov’s Axioms for Probability Measure of a Set 
Recall that the axioms for probability logic are expressed in terms of propositions a, b, 
and c as: 

P1: ( | ) 0P b a ≥  

P2: ( | & ) 1P b a b =  

P3: ( | ) (~ | ) 1P b a P b a+ =  

P4: ( & | ) ( | & ) ( | )P c b a P c b a P b a=  

These axioms imply the property: 

P6: (  or | ) ( | ) ( | ) ( & | )P c b a P c a P b a P c b a= + −  

Consider a real-valued quantity whose value x  is uncertain but we know that x X∈ , the 
set of possible values of the quantity, and assume that X is finite.  Let π  denote the 
proposition that specifies the probability model for the quantity, so π  states that x X∈  
and gives the probability (degree of plausibility) of the quantity having the value x  for 
each x X∈ .  

Let A X⊂ , then from axiom P1: 

K1: ( | ) 0P x A π∈ ≥  

From axiom P2: 

K2: ( | ) 1 (since  states )P x X x Xπ π∈ = ∈  

Also, ( | ) (  or | )P x A B P x A x Bπ π∈ ∪ = ∈ ∈  

( | ) ( | ) ( & | )P x A P x B P x A x Bπ π π= ∈ + ∈ − ∈ ∈  

( | ) ( | ) ( | )P x A P x B P x A Bπ π π= ∈ + ∈ − ∈ ∩  

If ,A B X⊂  are disjoint, i.e. A B φ∩ =  (nullset), then  and x A x B∈ ∈  are mutually 
exclusive, so: 

K3: ( | ) ( | ) ( | )P x A B P x A P x Bπ π π∈ ∪ = ∈ + ∈  

Introduce the shortened notation ( )P A  for ( | )P x A π∈  where A X⊂ , i.e. leave 
conditioning on π  as implicit, then we can rewrite the above as: 

K1’: ( ) 0,   P A A X≥ ∀ ⊂  

K2’: ( ) 1P X =  

K3’: ( ) ( ) ( ),  ,  with P A B P A P B A B X A B φ∪ = + ∀ ⊂ ∩ =  

These are like A. Kolmogorov’s axioms in “Foundations of the Theory of Probability,” 
1950.  In fact, we could define a real-valued function P , called a probability measure, on 
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all the subsets of X  by: ( ) ( | ),P A P x A A Xπ= ∈ ∀ ⊂ . We would then have exactly 
Kolmogorov’s axioms K1’-K3’ in terms of his probability measure. 

In Kolmogorov’s presentation, the set function ( )P A  is not given an operational 
interpretation.  Probability logic gives it an interpretation in terms of the degree of 
plausibility that the uncertain quantity has a value x A∈ , conditional on the probability 
model specified by the proposition π . 

We have not yet applied axiom P4, but:  
( | ) ( & | )P x A B P x A x Bπ π∈ ∩ = ∈ ∈  

  ( | & ) ( | )P x A x B P x Bπ π= ∈ ∈ ∈  

Introduce the abbreviated notation again, then: 

( ) ( | ) ( )P A B P A B P B∩ =  

Note that in any probability ( | )P b a , proposition a  cannot be self-contradictory, so we 
cannot have: 

( ) ( | ) 0P B P x B π= ∈ =  

because this means that ~ ( )x Bπ ⇒ ∈  and so the proposition ( & )x B π∈  appearing as 
conditioning information would be self-contradictory. 

Thus, ( ) 0P B >  and so: 

( )( | )
( )

P A BP A B
P B
∩

=  

In Kolmogorov’s approach, this appears as a definition of conditional probability, but in 
the probability logic approach, all probabilities are conditional from the outset and so the 
corresponding result appears as axiom P4. 

Note: In Kolmogorov’s approach, the uncertain-valued variable x  is called a random 
variable, the set of X  of possible values of x  is called the sample space and the subsets 
of X  are called events.  We have little use for this terminology because probability logic 
has a much wider scope – it’s domain is propositions. Also, we try to avoid the vague 
words deterministic and random in analyzing systems and natural phenomena, usually 
preferring instead complete information and incomplete (or partial) information, 
respectively. When there is missing information, we choose a probability model to give 
the probability of each possibility in a set of conceived possibilities. 
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Probability Models for Discrete Variables 

Defn  If the set X  of possible values of a variable x  is finite, then the variable is discrete 
(Terminology is also used if X  is countably infinite, but we here we focus on finite X ). 

Convention: Introduce the shortened notation: ( | ) ( | ),P A P x A A Xπ π= ∈ ∀ ⊂ , i.e. think 
of A  as also representing the proposition “ x A∈ ”.  Also, write: 

{ }( | ) for ( | ), ,P x P x x Xπ π ∀ ∈  i.e. when subset { }A x= . 

Here, π  is a proposition specifying the probability model for the quantity whose 
uncertain value x  is a discrete variable.  Thus, π  specifies the set X  of possible values 
of x  and some function : [0,1]f X →  such that ( | ) ( ),P x f x x Xπ = ∀ ∈ . 

Let { } { }1 1
, ,

N

N nn
X x x x

=
= ∪…  and let A X⊂ , then by repeated use of K3: 

{ }( | ) ( | )nx An
P A P xπ π

∈
= ∪  

  ( | ) ( )n n
x A x An n

P x f xπ
∈ ∈

= =∑ ∑  

because singleton sets { }nx  and { },mx n m≠ , are disjoint (i.e. propositions “ nx x= ” and 
“ mx x= ” are mutually exclusive).  In particular, using K2: 

1
1 ( | ) ( | ) ( )

N

n n
x X nn

P X P x f xπ π
∈ =

= = =∑ ∑ ,  

so this normalization property must be satisfied by the probability model . 
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Discrete-Variable Example to Illustrate Concepts 

Suppose a gambler offers you a wager that in N  rolls of a die, a 6 appears more than 
some specified on  times.  Before accepting the wager, you want to compute the 
probability that you will win, so you make a stochastic predictive analysis. 

Let x  denote the number of 6’s in N  rolls, then you want to compute: 

(You win | ) ( | )oP P x nπ π= ≤  

where π  specifies on appropriate probability model.  You reason that on a roll, each face 
is equally plausible to appear (i.e. you see no reason to believe any number on the die to 
be more likely to show up).  Also, you feel that knowing what number appeared on a roll 
has no influence on what will appear on the next roll, i.e. the information from one roll is 
irrelevant to predicting what will happen on another roll.  Therefore, you choose the 
binomial model, so π  represents the proposition that the set of possible values for x  is 

{ }0,1, ,X N= …  and that: 

( )( ) ( )51
6 6( | ) ,

x N xNP x x Xxπ
−

= ∀ ∈   

where ( ) !
( )! !

NN

Nx x x
=

−
 (a combinatorial coefficient). 

You win if { }0,1, ox A n X∈ ⊂…  and so 
x A

(You win| )=P(A| )= P(x| )P π π π
∈
∑ . 

After computing this probability, you are told that the gambler is dishonest and may have 
an altered die.  He showed you only one face and it was a 6, so you now wonder whether 
one or more of the other five faces have a 6.  You decide to revise your predictive 
analysis as follows.  [To make this scenario plausible, assume you only see the top face 
on each roll]  

Let kπ  specify the binomial probability model for the case where exactly k faces on the 

die have a 6, then for k = 1,.., 6: ( ) ( )| N
kP x xπ =  ( )1 ,x N x

k k x Xθ θ −− ∀ ∈  

where 6k
kθ =  is the probability of rolling a six. [Note that for 6π , all faces are 6’s, so 

x=N with certainty, i.e. ( )6| xNP x π δ= , the Kronecker delta]. Since you are unsure which 
proposition ,  1,...,6,k kπ =  is the appropriate one to assume true, you choose a probability 
model for these propositions:  

  ( ) ( )| , 1,...,6k kP M g kπ θ= =   
where M is a proposition specifying each kπ  and your choice of probability model, 

( )kg θ . Now you calculate: 

( )(You win | ) ( | ) |
x A

P M P A M P x M
∈

= =∑  

and use the Total Probability Theorem P7(b) to get: 
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( ) ( ) ( )
6

1
| | & |k k

k
P x M P x M P Mπ π

=

=∑  

because M implies that one, and only one, of 1 6,...,π π  is true. Note that the first factor is 
the prediction of the kth model and the second factor is the probability of the kth model.  
Also, ( ) ( )| & |k kP x M P xπ π=  because kπ  states the probability of each x X∈  and 

hence M is irrelevant, i.e. ( )| kP x π  is independent of M. We say that ( )|P x M is a robust 
predictive probability because it uses a set of probability models for x as specified by M, 
in contrast to ( )|P x π . 
 
Notes: 
 

1) When we write ( ) ( )| & |P c b a P c a= , we are stating that, given a, the 
information stated by b is irrelevant to the  probability of c, i.e. probabilistic 
independence is about information independence and should not be confused with 
causal independence when the propositions refer to the occurrence of actual 
events. 
 

2) There are many possible choices for M. You may feel that each kπ  is equally 

plausible, so: ( ) 1| , 1,...,6
6kP M kπ = ∀ = . But you may feel that the gambler is 

unlikely to have a die with 6 on every face because you would get suspicious if 
every roll gave a 6, so you choose ( )|kP Mπ  to be a decreasing function of k, 
subject to the constraint: 

( )
6

1
| 1k

k
P Mπ

=

=∑  

Your calculated probability of winning, and hence your decision whether to wager 
with the gambler, is conditional on your choice of M and this is inescapable. You 
cannot get certainty in the choice of kπ  in the absence of information about how 
many faces of the die have a 6. 
 
You could take different choices for M, say , 1,... ,jM j J= and let M specify a 
probability model for them, i.e. ( | ) ( ), 1,..., ,jP M M h j j J= =  then: 

( ) ( ) ( )
1

| | |
J

j j
j

P x M P x M P M M
=

= ∑    [Total Probability Theorem] 

 
3) kπ  specifies a probability model for x:  

( )| ( ),  k kP x f x x Xπ = ∀ ∈  
and M specifies a probability model for the kπ : 

( ) ( )| ,  1,...6k kP M g kπ θ= = .  
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However, introducing the notation of ( ) ( ) and k kf x g θ  is really unnecessary 

because we can use ( )| kP x π  and ( )|kP Mπ  instead in our analysis. 
 
Using Data to Update the Probability of Probability Models 
 
We use the gambling example to examine how we can use data D to learn more 
about the probability models. 
 
Suppose the gambler says after 2 rolls giving a 3 and a 6 that if you want, you can 
increase your bet. Therefore, you wish to calculate how information from data 

{ 1, 2}D x N= = =  changes your probability of winning, based on your choice of 
the class of probability models for x specified by M, as before. 
 
With ' {0,1,..., 1}:oA n= −  ( ) ( ) ( )

' '
You win | , ' | , ' | ,

x A
P D M P A D M P x D M

∈

= = ∑  

where the shorthand D, M means D & M  (a common convention) and where  
'x  denotes the number of 6’s in (N-2) rolls of the die. 

 
From the Total Probability Theorem: 

( ) ( ) ( )
6

1
' | , ' | | ,k k

k
P x D M P x P D Mπ π

=

=∑     

because ( ) ( ) ( ) ( ) 2 ''2' | , , ' | 1'
N xxN

k k k kP x D M P x xπ π θ θ − −−= = −  

(i.e. D and M are irrelevant because kπ  specifies the probability of 'x ). This has 
the same form as before except that the original probability ( )|kP Mπ  is updated 

to ( )| ,kP D Mπ  because of the new information specified by D. 
 
Applying Bayes Theorem P7(c) (with , and )k kb c D a Mπ= = = : 

( ) ( ) ( )| , | , | , 1,...6k k kP D M c P D M P M kπ π π= ∀ =  

where ( ) ( )
6

1

1
| , |k k

k
c P D M P Mπ π−

=

=∑  (it ensures that ( )
6

1
| , 1k

k
P D Mπ

−

=∑ ) and: 

( ) ( ) ( )

( ) ( )

2
1

| , 1

| , 1,...,6

k k k

k k

P D M

P M g k

π θ θ

π θ

= −

= ∀ =
 

 
Thus, Bayes Theorem gives: 

( ) ( ) ( )
[ ] [ ] [ ]Posterior to data Influence of data Prior to data

| , 2 1k k k kP D M c gπ θ θ θ= −
 

 
[Note that ( )6 | , 0P D Mπ = , as expected, since you now know that not all faces 
of the die have a 6]. 
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Substituting: 

( )
( ) ( ) ( )

( ) ( )

5
1 '' 12

1
5

1

1'
' | ,

1

N xxN
k k k

k

k k k
k

gx
P x D M

g

θ θ θ

θ θ θ

− −+−

=

=

−
=

−

∑

∑
 

We say that ( )' | ,P x D M  is the posterior robust predictive probability 

whereas ( )|P x M  given earlier is the prior robust  predictive probability, meaning 
after and before, respectively, the information in the data is utilized.  
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Note on Notation for Specification of Probability Models: 
 
There is another notation that we can use for specifying the probability models 
that will prove to be useful later. 
 
Introduce parameter θ  as the probability that a roll of the die gives a 6, then 
instead of the notation kπ  to specify the probability model for exactly k faces of 

the die having a 6, we could use ( )kπ θ  with 6k
kθ  and so: 

( )( ) ( ) ( )| 1 N xxNP x xπ θ θ θ −= −  and ( )( ) ( ) 1 6| ,   ,...,P M gπ θ θ θ θ θ= ∀ = .  

Thus, ( )π θ  is a variable proposition with { }1 6,...,θ θ θ∈ . But the notation ( )π θ  
seems unnecessarily cumbersome, so we write instead: 

( ) ( ) ( )| 1 ,N xxNP x x Xxθ θ θ −= − ∀ ∈  

( ) ( )| , P M gθ θ θ= ∀ ∈Θ  
where { : 1,....,6}k kθΘ = = . 
Superficially, it now looks as if we are specifying the probability of the parameter 
θ , and this is how most people using Bayesian analysis think of it, but strictly 
speaking θ  now represents the variable proposition that specifies the probability 
model for x, i.e. θ  has a dual role as representing this proposition and a 
parameter, both of which specify the probability model in a set of probability 
models given by the proposition M, i.e.  

θ =  “Probability model for x X∈  is ( )1 NN xx

x
θ θ −⎛ ⎞

−⎜ ⎟
⎝ ⎠

.” 

M =  “Probability model for the set of probability models 

( ) ( ){ 1 : }N xxN
x θ θ θ−− ∈Θ  is ( )."g θ  

Recall that x in ( )|P x θ  also has a dual role as the variable x X∈  and as the 
variable proposition: x =  “number of 6’s in N rolls of the die is x .” 
 
Why do we use these dual roles? Because it brings consistency between the 
notation that almost everybody uses in probability theory and the probability logic 
interpretation that we have of its meaning. However, if we were starting from 
scratch, we may have come up with the same notation anyway, because of its 
efficiency. 
 
To summarize, in general we use M to represent the proposition specifying the set 
of probability models for x X∈ , denoted ( ){ | : }P x θ θ ∈Θ , and the probability 

model for this set, denoted by ( )|P Mθ . We say that M specifies the class of 
probability models for x . 

 


