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1. Introduction 
 
1.0. Notation 
We use capital letters to denote an uncertain parameter (random variable) and 
use lower case letters to denote its parameter value. For integrals, when the 
integration domain is not specified, it is assumed that the integration is over the 
whole domain. Vector-valued quantities are indicated by an underline. We 
reserve  to denote the probability of a proposition and  to denote 
probability densities. Common abbreviations and symbols are as follows: 

)(⋅P )(⋅p

 
PDF  : Probability density function 
CDF  : Cumulative distribution function 
MCS  : Monte Carlo Simulation 
i.i.d.  : independent and identically distributed 

][⋅fE   : Expectation under PDF  f
  If  is not specified, it is understood to be the parameter PDF  f q

][var ⋅f   : variance under PDF  f

|||| ⋅   : Euclidean norm of a vector. For nRx∈ , ∑
=

=
n

i
ixx

1

2||||  

⋅〉〈⋅,   : Inner product between two vectors. For nRyx ∈, , ∑
=

=〉〈
n

i
ii yxyx

1
,  

 
1.1. Probability integrals 
Let nT

n RXXX ∈= ],...,[ 1  be a vector of uncertain parameters modeled as random 
variables with joint probability density function and let  be some 
non-negative function of 

}0{: ∪→ +RRh n

X  (often related to the response quantity of interest). In 
probabilistic analysis, we are often interested in computing the expectation of 

)(Xh , which can be expressed as a ‘probability integral’ of the form: 

xdxqxhXhEJ )()()]([ ∫==  
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Example 1.1. 
Let )(Xy  be the displacement of a structure that depends on the loading 
specified by X , and let )]([ XyE=µ  denote its expectation. Then if  

2))(()( µ−= XyXh ,  will be the variance of J )(Xy . 
 
Example 1.2. 
Define the indicator function  which takes as its argument a set or a 
proposition 

)(AI
A , and returns 1 if A  is true and zero otherwise, i.e., 

⎩
⎨
⎧

=
false is  if0
 trueis  if1

)(
A
A

AI  

Then )()(~0)(1)]([ APAPAPAIE =×+×= . Thus, if we let ))(()( bXyIXh >=  for 
some fixed b , . In reliability theory, we usually call this the failure 
probability of  (exceeding ). 

))(( bXyPJ >=
)(Xy b

 
1.2. Failure probability and complementary CDF 
In engineering applications, we often need to deal with failure events that are 
expressed in terms of union or intersection of exceedance events, say, 
corresponding to system components connected (logically) in series or in 
parallel. It turns out that failure events of this kind can always be expressed in 
terms of the exceedance of a single variable. 
 
Example 1.3. 

Let , then  can be expressed as ∪
m

i
ii bYF

1

}{
=

>= F }1{ >= YF  where . 

The proof is left as an exercise. 

iimi
bYY /max

,...,1=
=

 
Example 1.4. 

Let , then  can be expressed as ∩
m

i
ii bYF

1

}{
=

>= F }1{ >= YF  where . 

The proof is left as an exercise. 

iimi
bYY /min

,...,1=
=

 
In general, a failure event defined by stacking of union or intersection of 
exceedance events can be expressed as the exceedance event of a single 
variable defined by stacking of max. or min. in the same order.  
 
Example 1.5. 

Let , then ∩∪∩
1 2 3

1 1 1

}{
m

i

m

j

m

k
ijkijk bYF

= = =

>= }1{ >= YF  where ijkijkmkmjmi
bYY /minmaxmin

321 ,...,1,...,1,...,1 ===
= . 

 
This generic representation of failure event builds a link to the exceedance event 
of a single variable. Further, if we consider }{ yYFy >=  generally for some other 
values of  (in addition toy 1=y ), then this will induce a series of failure events 
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that correspond to different threshold values. E.g., if   

where , then . Thus, by considering 

 for different values of , we can investigate the trend of the 
probability failure at different extents, which is more informative than just a point 
estimate of . 

}1{}{
1

>=>=
=

YbYF
m

i
ii∪

iimi
bYY /max

,...,1=
= ∪

m

i
iiy ybYyYF

1

}{}{
=

>=>=

)()( yYPFP y >= y

)1()( >= YPFP
 
Viewing  as a function of )()( yYPFP y >= y , finding the failure probability in our 
context is equivalent to finding the complementary CDF (cumulative distribution 
function) of a single variable Y  (the complementary CDF = 1 – CDF), especially 
at the tail when small failure probabilities are the main interest. 
 
1.3. Problem context 
Throughout our discussion, we assume we are dealing with probability integrals 
under the following context (unless otherwise specified): 
 

1.  is assumed to be given and correspond to some ‘known’ distributions 
(e.g., consisting of Gaussian, exponential PDFs) so that 
q

a. we can evaluate )(xq  efficiently for any given x  
b. we can generate random samples from  efficiently q

This assumption distinguish our problem from Bayesian updating 
problems, where in the latter case the PDF is often of some form for which 
the efficient generation of random samples is highly-nontrivial and the 
PDF is only known up to a scaling constant. 
  

2.  are assumed to be mutually independent. This does not generate 
much loss of generality because in forward analysis problems dependent 
variables are generated by independent ones. 

nXX ,...,1

 
3.  is a non-negative function. The relationship between h x  and )(xh  may 

not be explicitly known, in the sense that, although we can evaluate the 
value of )(xh  for a given x , we may not be able to obtain other 
information such as gradient or Hessian; the latter quantities may have to 
be computed numerically, e.g., using finite difference. 

 
4. The computational effort for evaluating )(xh  for each value of x  is 

significant, and we want to reduce the number of evaluations in our 
computational procedure for evaluating . J

   
5. We are interested in small failure probabilities, or equivalently, the tail of 

the complementary CDF of Y . 
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6. We will pay attention to whether a particular method will work for large  
(theoretically infinite), i.e., high dimensions. Computational methods that 
are applicable in high dimensions are generally more robust and more 
sustainable.  

n

 
1.4. Different perspectives 
We will discuss different approaches available for evaluating probability integrals. 
Setting aside the technical issues in the particular algorithms, the limitation and 
the mechanism by which the algorithms derive their computational efficiency can 
be better appreciated when the perspective through which the integral is viewed 
by a particular method is recognized. A brief overview of different approaches to 
be discussed here is given below by surveying through different perspectives. 
 
1) Numerical integration  
If we view the probability integral as a sum of differential contributions 

xdxqxh )()( , then we will use numerical integration to evaluate , e.g., dividing J
nR  into a number of disjoint hypercubes (intervals if 1=n ), evaluate xdxqxh )()(  

at the center of each element, and then sum the contribution from all the 
hypercubes as an approximation for . If we divide the each dimension into  
intervals, then the total number of elements is  and this often leads to an error 
of . Put it the other way, if altogether we spend  evaluations, then the 
approximation error is . The dependence of the error on n  has important 
implication on the applicability of numerical integration – it is not efficient in high 
dimensions and for  is inferior to Monte Carlo simulation, whose error is 

 regardless of n . We will not discuss numerical integration here. 

J N
nN

)( 1−NO N
)( /1 nNO −

3≥n
)( 2/1−NO

 
2) Asymptotic approximation 
In many applications, it is observed that the integrand )()( xqxh  has one or more 
peaks in nR , which can be reasoned from the fact that )(xq  is a parameter PDF 
that is often peaked at the mean value. If we recognize that the main contribution 
of  comes from the neighborhood of the peak(s), then we can first identify their  
neighborhood, e.g., by locating the peak(s), and then try to make use of 
information at the peak(s) to approximate . This leads to a class of methods 
called ‘asymptotic approximation’ (or, it can be viewed simply as a Gaussian 
approximation of integrand). These methods provide estimates for  whose 
error, however, cannot be reduced by spending more computational effort. 
Further improvement of accuracy can be achieved by adopting a stochastic 
simulation method called ‘importance sampling’ which makes use of the 
information already obtained about the important region but whose stochastic 
character allows the estimate be improved and to converge to the exact value 
when more computational effort is spent.  

J

J

J
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3) Direct Monte Carlo 
The probability integral  can be viewed as a mathematical expectation of J )(Xh  
with X  distributed as , and this perspective leads to the direct Monte Carlo 
method, where  is estimated as a sample average of  over independent and 
identically distributed samples  of 

q
J h

X  drawn from the PDF q . The error of this 
method is  regardless of  and so it is extremely robust with respect to 
applications. Of course, since now the estimate for  depends on the random 
numbers that are generated in each trial, we will get different answers in different 
trials, and the error is better measured in terms of the variance of the estimator 
rather than the error involved in a particular trial. Methods that involve generating 
random samples for statistical averaging are referred here as ‘stochastic 
simulation method’. 

)( 2/1−NO n
J

 
4) Importance sampling method 
It turns out, however, that when we try to use direct Monte Carlo to estimate 
failure probabilities (or generally some  that takes on significant value at the tail 
of ), the relative error (relateive to the target failure probability we want to 
estimate) grows dramatically with decreasing failure probability. Essentially, if the 
failure probability is , then for small  the relative error is approximately 

h
q

FP FP
NPF/1  and so will be quite large for rare failure events (small ). There are 

stochastic simulation methods that try to reduce this relative error, collectively 
known as ‘variance reduction techniques’. One popular way to reduce the 
variance is to gain some information about the important region in the parameter 
space that gives significant contribution to , and then try to use such 
information to construct a simulation method that can generate more samples in 
that important region, which hopefully can reduce the variance of estimator. We 
will discuss one method following this spirit, called ‘importance sampling 
simulation’.   

FP

J

 
5) Subset Simulation 
We will then find that there are many cases where getting information about the 
important region directly is indeed quite difficult, and we will sail along a some 
what different perspective, where we view a small failure probability as a product 
of large conditional failure probabilities. In terms of simulation, we effectively 
convert a rare simulation problem into a sequence of more frequent ones, and 
we progressively generate samples that populate towards the important region. 
Such method is called ‘Subset Simulation’, which is the result of insights about 
the probabilistic structure of rare events and the use of a powerful simulation 
method called Markov Chain Monte Carlo (MCMC) method (which can be a big 
topic by itself!). 
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2. ASYMPTOTIC APPROXIMATION 
 
2.0. Preliminaries 
We start with a brief introduction of asymptotic relationships. In Calculus, we say 
that as ,  if ax → )()( xgxf → 0)()(lim =−

→
xgxf

ax
. In asymptotic theory, we say 

that as ,  (read as ‘  is asymptotic to  as ’ or ‘  is 
asymptotically equivalent to 

ax → )(~)( xgxf f g ax → f
g  as ’) if . That is, 

asymptotics deals with limit of ratios. Note the followings: 

ax → 1)(/)(lim =
→

xgxf
ax

 
1. As , let , ax → f g  be non-vanishing. If , then  as well, i.e., 

convergence implies asymptotics. The proof is left as an exercise. Note 
that the reverse is not true.  

gf → gf ~

2. The requirement that , f g  are non-vanishing in the last comment is 
necessary, e.g., consider xf =  and , then  as  
but  as 

2xg = 0→→ gf 0→x
∞→= xgf /1/ ∞→x . 

 
Example 2.1. 
Let  and , then as xxf += 2 2xg = ∞→x , 1/11/ →+= xgf  so . However, 

 and so  does not converge to  as 
gf ~

∞→=− xgf f g ∞→x . This illustrates that 
asymptotic relation is generally weaker than convergence. In fact,  and  only 
need to have their ‘dominant’ term (  in our example) to be equal in the limit, in 
order for them to be asymptotically equivalent. 

f g
2x

 
2.1. Approximation based on Taylor series of log integrand 
Consider again 

xdxkxdxqxhJ )()()( ∫∫ ==  

where for simplicity in notation we have let )()()( xqxhxk = . The method that we 
will discuss in this chapter depends on information about 0)( ≥xk  and does not 
need to resolve into the details of  and . Here we assume that h q )(xk  has only 
one a peak at, say, *x  (often called ‘design point’ or ‘check point’ in reliability 
literature) and the Hessian matrix of )(xk  at *x  is negative definite. We are going 
to derive an approximation of  based on approximating J )(ln xk  using up to 
second order derivatives at its peak (we will explain why we approximate )(ln xk  
instead of )(xk  later).  
 
First, we approximate )(ln xk  by a second order Taylor series about *x , 

))(()())]((ln[)(ln)(ln **
ln

**** xxxHxxxxxkxkxk k
T −−+−∇+≈   

where )(ln *xk∇  and )( *
ln xH k  are the gradient and Hessian of  at kln *x . Note 

that it is sufficient for the above approximation to be good in the neighborhood of 
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*x  since we assume that elsewhere the contribution to the integral is 
insignificant.  
 
Since *x  maximizes )(xk , 0)( * =∇ xk , and so 0)()()(ln *1** =∇=∇ − xkxkxk . Using 
this fact and writing )()( *

ln
*

ln xHxH kk −−= , we have 

))(()(
2
1)(ln)(ln **

ln
** xxxHxxxkxk k

T −−−≈ −  

Substituting this approximation into the integral, we have 

∫ ⎥⎦
⎤

⎢⎣
⎡ −−−≈ − xdxxxHxxxkJ k

T ))(()(
2
1exp)( **

ln
**      (2.1) 

To proceed, we need to evaluate the integral in the above equation, and it turns 
out that it can be integrated analytically. For this, we note that, since )( *xHk  is 

negative definite, so is )( *
ln xH k , and hence )()( *

ln
*

ln xHxH kk −=−  is positive 

definite. Thus, if we let 1*
ln )]([ −

−= xHC k , C  will also be a positive definite matrix, 

since its eigenvalues are the reciprocal of those of )( *
ln xH k− . Noting that any 

positive definite matrix is a legitimate covariance matrix, we consider the n -
dimensional Gaussian PDF with mean *x  and covariance matrix C :  

⎥⎦
⎤

⎢⎣
⎡ −−−= −

−

)()(
2
1exp

det
)2()( *1*

2/

xxCxx
C

x T
nπφ  

Now, by noting that the PDF integrates to 1 over nR , we immediately get  

|)(det|

)2(det)2()()(
2
1exp

*
ln

2/
2/*1*

xH
CxdxxCxx

k

n
nT ππ ==⎥⎦

⎤
⎢⎣
⎡ −−−∫ −  (2.2) 

where the last equality has made use of the fact that the determinant is equal to 
the product of eigenvalues and that the eigenvalues of C  are just the reciprocal 
of those of )()( *

ln
*

ln xHxH kk −=− . Substituting this integral into (2.1), we obtain 

|)(det|

)()2(
*

ln

*2/

xH

xkJ
k

nπ
≈  (2.3) 

 
Some comments about this approximation are in order: 
 
1. The formula depends on the value and Hessian of the integrand at the design 

point *x  (the gradient information does not appear because it is zero at *x ). 
 
2. The approximation involves approximating the integrand by an exponential 

function of a concave quadratic form, i.e., a Gaussian type function. 
Obviously, whether the formula can give a good approximation to the actual 
value of  depends on how close the integrand is to a Gaussian type 
function, and seems to have nothing to do with ‘asymptotics’. So why is it 
called ‘asymptotic approximation’? It is due to the fact that this approach is 

J
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motivated by the asymptotic results of Laplace integrals, which will be 
discussed in the next section. 

 
3. One may wonder why we used a Taylor series to approximate  rather 

than . It is because in applications the integrands that we are dealing with 
are non-negative and decay to zero as 

kln
k

0|||| * →− xx , the latter due to the 
decaying property of )(xq . A Gaussian type function that resulted from 
approximating  as a second order Taylor series has this property. In 
contrast, a second order Taylor series approximation of k  will produce a 
concave quadratic form that to tend to negative infinity as 

kln

0|||| * →−x x , which 
violates the behavior of k . Finally, in many applications  is chosen to 
correspond to some exponential family (e.g., Gaussian PDF, Exponential 
PDF) and so a Gaussian type function seems a good form for approximation. 
Of course, in a particular application, if the form of the integrand is known, 
one may be able to come up with a better approximation by using a functional 
form that is closer to that of the integrand. 

q

 
4. When there are more than one design points, a similar argument generalizes 

our result to include contributions from all design points: 

∑
=

≈
m

i ik

i
n

xH

xkJ
1

*
ln

*2/

|)(det|

)()2( π   

In this case, the approximation is equivalent to fitting the integrand with a sum 
of Gaussian type functions centered at each design point. For neighboring 
design points (especially when they are close), their fitting functions may 
overlap, and this may lead to a poor approximation. One may try to come up 
with a way to account for such overlap although it is somewhat non-trivial. 

 
2.2. Asymptotics of Laplace integrals 
 
The theorem and the proof below follows that of Brietung (1994), though in a 
simplified form to suit our context and avoid unnecessary mathematical 
technicalities. Further reference can also be found in Bleistein & Handelsman 
(1975). 
 
Theorem: Let  be a twice continuously differentiable (i.e., all partial 
derivatives up to second order exist and are continuous) and  be 
continuous. Define the Laplace integral (with large parameter 

RRf n →:
RRg n →:

β ) as 

∫= xdexgJ xf )(2

)()( ββ  

If  has a single maximum at f *x  and its Hessian )( *xH f  is negative definite, 
then 
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n

f

xf
n

xH

exgJ −βπ
β

|)(det|

)()2(~
*

)(*
2/

*2

, as ∞→β  

 
Before we give the proof, we note that following: 
 
1. The above formula is identical to (2.3) if we take 1)( ≡xg  and 

2/)(ln)( βxkxf = . Of course, this does not mean that (2.3) was asymptotic in 
any sense, because in this theorem  should not depend on f β . 

 
2. Intuitively, the asymptotic relationship in the theorem holds because as β  

increases, the term )](exp[ 2 xfβ  will be very peaked around *x , leaving other 
regions unimportant in accounting for the value of the integral, and making 
only the value of )(xg  at *x  relevant. The Hessian of  is involved since  is 
attached to  and so will affect the rate at which the integral is peaked as 

f f
2β

∞→β  and the effective region that gives significant contribution to the 
integral. 

 
Proof:  
For convenience and without loss of generality, assume 0* =x  and 0)( * =xf . 
First, 

∫= xdexgJ xfnn )(2

)()( ββββ  

Changing integration variable β/zx = , then zdxd n−= β , and 

∫∫ ==
nn RR

zfn zdzkzdezgJ )()/()( )/(2

β
βββββ  

where  
)/(2

)/()( ββ
β β zfezgzk =  

The proof will be completed by showing that as ∞→β , 

∫∫∫ =⎥⎦
⎤

⎢⎣
⎡==

∞→∞→ |)0(det|
)2)(0()0(

2
1exp)0()(lim)(lim

2/
2

f

n

f
T

H
gzdzHzgzdzkzdzk πβββββ

 (2.4) 

 
We will proceed to show the first two equalities, where the last equality follows 
from (2.2). 
 
The first equality involves exchanging the order of limit and integration, which can 
be shown using the Lebesgue Dominated Convergence Theorem (see, e.g., 
Rudin 1966). It says that if a sequence of functions ,...}2,1:{ =nfn  converges to 

 and is bounded (in absolute value) by an integrable function , i.e., for every 
, 

f g
n )(|)(| xgxfn <  nRx∈∀ , then xdxfxdxfxdxf nnnn

)()(lim)(lim ∫∫∫ ==
∞→∞→

, i.e., order 

of limit and integration can be exchanged. To make use of the Dominated 
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Convergence Theorem, we need to show that )(zkβ  is bounded by an integrable 
function. This is through the following lemma whose proof is referred to Breitung 
(1994), p.56: 
 
Lemma: 
Let  be twice continuously differentiable, and  RRf n →:
1) )()0( xff > , }0/{nRx∈∀  
2) )0(fH  is negative definite 

Then there exists  such that 0>K nRx∈∀ , 
xxKfxf T−≤ )0()(  

That is, it is possible to find a concave quadratic form that bounds . f
 
Now, using the lemma, 

zzKzf T

ezgezgzk
22

)/()/()( )/( βββ
β ββ −≤=  

and, since the function on the RHS is integrable, the Dominated Convergence 
Theorem holds for  and this validates the first equality in (2.4). βk
 
To show the second equality in (2.4), first note that 

)/(lim)/(lim)/(
22

2

)0()/lim()/(lim)(lim
ββββ

β

ββ

βββ

ββββ
zfzfzf egezgezgzk ∞→∞→ ===

∞→∞→∞→
 

since  and  are continuous. Next, using L’Hospital’s rule: g )exp(⋅

)/(lim 2 ββ
β

zf
→∞ 13

2

2 2
)/(

lim
2

)()/(
lim)/(lim −→∞−

−

→∞−→∞

∇
=

−
−∇

==
β
β

β
ββ

β
β

βββ

zzfzzfzf  

zHzzzHz
zzHz

f
T

f
Tf

T

)0(
2
1)/lim(

2
1

)(2
)()/(

lim 2

2

==
−

−
=

→∞−

−

→∞
β

β
ββ

ββ
 

where the last but one equality holds because  is twice continuously 
differentiable. Thus,  

f

⎥⎦
⎤

⎢⎣
⎡=

∞→
zHzzgzk f

T )0(
2
1exp)()(lim ββ

 

which shows the second equality of (2.4). Thus, the proof is completed. 
 
Note: 
 
1. There is another case where the integration domain is a subset  of F nR  and 

where the maximum point *x  appears at the boundary of . This case is 
often encountered in reliability analysis, where 

F
)()( FxIxh ∈=  is an indicator 

function and )()()()( FXPxdxqxdxqFxIJ
F

∈==∈= ∫∫  is the probability of 

failure. The resulting formula in this case will depend on the gradient of  at kln
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*x  with respect to the normal to the boundary of . We will present one 
asymptotic result in this case for q  being a standard Gaussian PDF. 

F

 
2. In the case of multiple design points, the asymptotic result for the Laplace 

integral still holds, with the asymptotic formula including contributions from 
each design point. 

 
2.3. Reliability integrals (FORM/SORM) 
 
Here, we focus our attention on the case of finding failure probabilities when  is 
a -dimensional standard Gaussian joint PDF, i.e., for 

q
n

⎟
⎠
⎞

⎜
⎝
⎛−== − xxxxq Tn

2
1exp)2()()( 2/πφ , )()(x FxIh ∈=  

and 
xdxxdxqFxIFPJ

F
)()()()( ∫∫ =∈== φ  

The reason why we consider a standard Gaussian space is that, first of all, 
Gaussian distribution is used in many applications, and even if an uncertain 
parameter is not Gaussian, we may still be able to transform it to a Gaussian one 
(although transformation of dependent variables are technically more difficult). 
Secondly, and perhaps more importantly, the standard Gaussian space has 
some nice properties such as rotational symmetry, and it is possible to obtain 
some insightful results. 
 
In the context of finding failure probabilities, we assume that the failure region  
is some half space that is away from the orgin. This is usually encountered in 
engineering applications because the nominal state of an engineering system is 
situated near the origin in the standard Gaussian space and often correspond to 
a ‘safe’ rather than ‘failure’ state. The failure region is commonly defined through 
a limit state function 

F

g , in the form }0)(:{ <∈= xgRxF n . Thus, the failure 
boundary is given by }0)(:{ =∈=∂ xgRxF n . 

x1

x2

FF1

*x

y1 
y2 

 

 
Fig. 2.1: Schematic diagram for FORM 
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First Order Reliability Method (FORM) 
Consider the failure region  as shown in Fig.2.1. By noting that a standard 
Gaussian PDF decays with the distance of 

F
x  from the origin, it can be reasoned 

that the point in  that has the highest PDF value among all points in  is the 
one that lies at the boundary and is closest to the origin, say, 

F F
*x  in the figure. The 

neighborhood of *x  should give the major contribution to failure probability, and 
so we may approximate the failure probability by approximating the failure region 
in that neighborhood.  
 
In FORM, we approximate the failure region by a linear half-space 

}0,:{ *2
1 <〉〈−∈= xxRxF n β , where |||| *x=β  is often known as the ‘Hasofer-Lind 

reliability index’ (or ‘reliability index’ in short) in the structural reliability literature. 
The failure probability is then approximated as 

xdxxdxFP
FF

)()()(
1
∫∫ ≈= φφ  

To evaluate the rightmost integral, we note that the standard Gaussian PDF is 
rotationally symmetric, in the sense that if we write our coordinates with respect 
to another orthonormal basis, i.e., from x  to y  in Fig.2.1, it does not change the 
value of the PDF nor the integral, thus, 

)()(...),...,()()()( 11221
11

βφφφφ
β

−Φ===≈ ∫∫∫∫
∞

−
dyydydyyyydyxdxFP

nR nnFF
 

where the second equality holds because, in the space of y , }{ 11 β>= yF  and so 
does not depend on .  nyy ,...,2

 
Second Order Reliability Method (SORM) 
In SORM, we approximate the failure boundary by a hyper-paraboloid with limit 
state function (see Fig.2.2) 

∑
=

−−=
n

i
ii yyyg

2

2
12 2

1)()( κβ  

where 

ig
T

ii vxHv
xg

)(
||)(||

1 *
*∇

−=κ , ni ,...,1=  

are the principal curvatures at *x  of the failure boundary }0)({ == xgF  with 
respect to the orthonormal tangent space of ; F },...,1:{ nivi =  are the orthormal 
eigenvectors of )( *xHg  with 1v  parallel to *x . Note that the definition of the 
curvature is such that a sphere around the origin has a positive curvature. 
 

 12



© Siu-Kui Au, July 13, 2005 

x1

x2

F

*x
y1

y2 

F2

 
Fig. 2.2: Schematic diagram for SORM 

 
Unfortunately, even after approximating  by F }0)({ 22 <= xgF , the resulting 
failure probability integral still does not admit a close form solution. However, for 

∞→β , an asymptotic formula has been found (e.g., Breitung 1994): 
 
If βκ /1<i  for , then  ni ,...,2=

n

i
i

F
ydy

2

)1(

)(~)(
2

=

−

−Φ
∫

βκ

βφ , as ∞→β  

The condition βκ /1<i  for  is to make sure that the design point ni ,...,2= *x  is 
indeed a point with minimum distance in its neighborhood on . F
 
[To better appreciate the condition βκ /1<i , it is a simple exercise to show that 

the curvature on any point on the spherical surface xxxg T

2
1

2
1)( 2 −= β  of radius 

β  is equal to β/1 . On this spherical surface we know that there is no point with 
minimum distance because all points are of the same distance β  from the 
origin.] 
 
 
2.4. Final Remarks 
The discussions and results presented here work as long as the problem at hand 
is of similar context to what we discussed and the Gaussian approximation of 
integrand is reasonable. In applications, the major computational effort is usually 
spent on locating the design point, which can become prohibitive when the 
dimension  is large (of course, we should always investigate our problem first 
and see if we can get the design point analytically or see what advantage we can 
take based on our understanding about the problem). The potential existence of 
multiple design points, where usually it is difficult to find them all (if we ever 
bother to find them!), is another issue one needs to be mindful about. Later we 
will discuss a stochastic simulation method called importance sampling which 

n
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may be able to correct the potential bias in the asymptotic approximation, of 
course by spending additional computational efforts. 
 
Exercise 

1. Let  where ∑
=

=
n

i
ii XcY

1

},...,1:{ niXi =  are i.i.d. standard Gaussian. Then from 

elementary probability we know that . Suppose we don’t know 

this and we try to approximate  using asymptotic approximation by 
viewing it as 

∑
=

=
n

i
icY

1

2]var[

]var[Y

∫= xdxkY )(]var[  

where ∑
=

=
n

i
ii xxcxk

1

2 )()()( φ . Use the asymptotic approximation to estimate 

 and see if it is a good approximation. ]var[Y
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3. Direct Monte Carlo Method 
 
Consider  

∫= nR
xdxqxhJ )()(  

where now we write the integrand explicitly in terms of  and the parameter PDF 
, because the method we are going to discuss explores this structure. Since  

is a valid PDF, the integral can be viewed as an expectation of 

h
q q

)(Xh  when X  is 
distributed as . This implies  can be estimated as a sample average: q J

∑
=

=≈
N

k
kN Xh

N
JJ

1
)(1~  

Where NkX k ,...,1, = , are i.i.d. samples drawn from . This is the well-known 
(direct) Monte Carlo Simulation (MCS) method, which is applicable regardless of 
problem complexity, number of uncertain variables, etc. In the case of reliability 
analysis where 

q

)()( FxIxh ∈= ,  

samples of no. total
samples failed of no.)(1~

1

=∈=≈ ∑
=

N

k
kN FXI

N
JJ  

which corresponds to our usual way of estimating probabilities by repeating 
experiments. 
 
3.1. Statistical properties of estimators 
 
Mean and variance 
It can be easily shown that for every  N

JJE N =]~[  
and  

N
hJN

]var[]~var[ =         (3.1) 

N
J h

NJ N

σσ == ]~var[~  

where ⋅σ  denotes the standard deviation of the subscribed variable. 
 
Thus, is an unbiased and convergent estimator for . The variance of the 
estimator is often used for judging the efficiency of a stochastic algorithm. The 

 decay of variance, or equivalently, 

NJ~ J

N/1 N/1  decay of standard deviation 
(which has the same unit as ), is a common phenomenon in stochastic 
estimation methods. It is 

J
N/1  instead of  (as in one-dimensional 

integration) due to the stochastic nature of samples. One important feature is that 
it does not depend on , in contrast to  for numerical integration. 

N/1

n )( /1 nNO −

 
 
 

 15



© Siu-Kui Au, July 13, 2005 

Stochastic convergence 
So we know  is unbiased and convergent, but does it mean that in any 

particular trial of run  must converge to the target value if we keep on 
increasing ? Well, the expectation and variance do not say anything about this. 
For direct MCS, the answer is positive, due to a strong statement called the 
‘Strong Law of Large Numbers’. It says that if we take the sample average of  
i.i.d. numbers with a finite variance, then with probability 1 it will converge to the 
expectation. ‘With probability 1’ here may be understood practically as ‘for every 
trial of run’. Thus, 

NJ~

NJ~

N

N

1)~lim( ==
∞→

JJP NN
 

   
Note:  
1. In probability theory where the argument inside )(⋅P  is a set, the statement 

‘ JJNN
=

∞→

~lim ’ needs to defined more technically. We omit this technicality here. 

  
2. The Strong Law of Large Numbers refers to a convergence called 

‘convergence with probability 1’ or ‘almost sure convergence’. There are other 
kinds of convergence, such as ‘mean-square convergence’, ‘convergence in 
probability’, ‘convergence in distribution’, that differ in their strength of 
assertion. For example, if it converges with probability 1, then it can be shown 
to converge in probability, but the reverse is not true. These different notions 
of convergence are invented due to the mathematical difficulty in showing 
convergence in different problems. E.g., in some problems it is difficult to 
show convergence in probability 1 but it can be easy to show convergence in 
mean-square. For further details, one may refer to texts on probability, e.g., 
Papoulis (1996), Billingsley (1995). 

 
Central Limit Theorem 
It is generally difficult to obtain the distribution of  for every , but the Central 

Limit Theorem says that when  is ‘large’ (theoretically infinite), then  is 
asymptotically Gaussian, i.e.,  

NJ~ N

N NJ~

∫ ∞−

−

∞→
=Φ=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
<

− a z

J

N
N

dzeaaJJP
N

2/

~

2

2
1)(

~
lim

πσ
 

for every . How ‘large’ an  is large? It depends on the distribution of a N )(Xh . 
The closer the )(Xh  is to a Gaussian distribution, the smaller the  to be 
considered large. In particular, if 

N
)(Xh  has a Gaussian distribution, then  is 

Gaussian for every . In statistics,  is considered large, but bear in mind 
that it is just a rule of thumb. 

NJ~

N 30≥N

 
3.2. Problem with rare event simulation 
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For estimating failure probabilities )()( FxIxh ∈= , and so in (3.1) 
222 )()()]([])([]var[ FPFPFXIEFXIEh −=∈−∈=  

])()([1]var[]~var[ 2FPFP
NN

hJN −==  

Thus, for small failure probabilities (our usual interest), , i.e., NFPJN /)(~]~var[
NFP

NJ /)(~~σ , which looks good since the smaller the , the smaller the )(FP

NJ~σ . But, let’s look closer. Suppose the failure event corresponds to  

and we use , then 

210)( −=FP

100=N 1~ =
NJσ  - are we satisfied with this error? Probably not, 

since the error is so large compared to the estimate. Thus, it is often more useful 
to judge based on how big the error is relative to the target estimate, i.e., the 
‘coefficient of variation’ (c.o.v.) defined as the ratio of 

NJ~σ  to : ]~[ NJE

NFP
FP

JE N

J
J

N

N )(
)(1

]~[
~

~
~

−
=

σ
δ  

For small , )(FP NFP
NJ )(/1~~δ  so we immediate see that as having smaller 

 is not a good thing! It is due to this observation that direct MCS is 
commonly recognized as not efficient for estimating small failure probabilities, or 
more generally, not efficient for investigating rare events (e.g., tail of 
distributions). This can be understood intuitively, since when the failure 
probability is small, most of the samples do not fail, and with only a small number 
of failure samples (if any) it is difficult to get information about the likelihood of 
failure.  

)(FP

 
As a rule of thumb, to estimate a failure probability  with a coefficient of 
30%, one requires on average  

)(FP
)(/10 FPN =  samples, or ‘10 failure samples’. 

 
Facing with the problem of direct MCS with rare events, methodologists have 
been trying to come up with more advanced stochastic simulation methods that 
can investigate rare events more efficiently, by commonly trying to generate 
more failure samples that hopefully will yield more information about failure and 
hence providing a better estimate. How is it possible? E.g., by finding more 
pertinent information about the particular system we are dealing with and use 
such information to modify our stochastic sampling and estimation procedure, or 
even devising a method such that the information is found during the simulation 
process and used as soon as it is found. Yet we will find that as we try to beat 
direct MCS on the grounds of efficiency (smaller c.o.v.), we are bound to lose out 
on robustness (i.e., being applicable and efficiency for different kinds of 
problems) – this may be a law of the game.  
 
3.3. Reduction of dimension 
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Let the set of uncertain parameters consist of two (sub-) set of uncertain 
parameters Y  and Z , i.e., ],[ ZYX = . Suppose we have an efficient method 
(e.g., by analytical means) for computing the conditional expectation of 

),()( ZYhXh =  given Y , i.e., for every y , we can compute easily  

∫=== zdyzqzyhyYZYhEyC )|(),(]|),([)(  

where )|( yzq  is the conditional PDF of Z  given Y . Note that   
)]([]]|),([[)],([ YCEYZYhEEZYhE ==  

where the inner expectation is taken over uncertainty in Z  for given Y  and the 
outer expectation is taken over uncertainty in Y . This suggests that we can 
estimate )],([ ZYhE  by averaging )(YC  as 

∑
=

=≈
N

k
kN YC

N
JZYhE

1

' )(1~)],([  

where NkY k ,...,1, =  are i.i.d. drawn from )(yq  (the marginal PDF of Y ). Of 
course, we can also do direct MCS as 

∑
=

=≈
N

k
kkN ZYh

N
JZYhE

1

),(1~)],([  

where NkZY kk ,...,1,, =  are i.i.d. drawn from ),( zyq  (the joint PDF of Y  and Z ). 

Is it always more efficient (in the sense of c.o.v.) to use  rather than ? The 
answer is positive, as it can be shown that 

'~
NJ NJ~

]~var[]~var[ '
NN JJ ≤  

where the equality holds if and only if 0]|),(var[ == yYZYh  for every y .  
[Exercise to show that if Z  is a dummy, i.e.,  does not depend on h Z , then 

0]|),(var[ == yYZYh .] 
 
The proof is a direct consequence of the ‘conditional variance formula’, which 
says that for any uncertain variable A  and any proposition B ,  

]]|[var[]]|[var[]var[ BAEBAEA +=  
 
The proof of the conditional variance formula is left as an exercise. Hint: Start 
with the definition of  and take expectation. A proof for random variables 
can also be found in Ross (1971). 

]|var[ BA

 
Applying the conditional variance formula with ),( ZYhA =  and YB = , we have  

]]|),([var[)](var[]]|),([var[]]|),([var[)],(var[ YZYhEYCYZYhEYZYhEZYh +=+=  
i.e.,  

]~var[]]|),([var[]~var[]~var[ ''
NNN JYZYhEJJ ≥+=  

since 0]|),(var[ ≥YZYh . 
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This section is included here to remind that if we can integrate out certain 
uncertain variables in the problem, it is worth doing because it will surely reduce 
the estimation variance and hence computational effort. 
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4. Importance Sampling Method 
 
Consider 

∫= nR
xdxqxhJ )()(  

where 0)( ≥xh . The basic idea of importance sampling is to generate samples 
that lie more frequently in the ‘important region’ that gives major contribution to 
the integral, hopefully to reduce the variance of the estimator. In the context of 
reliability analysis where )()( FxIxh ∈= , this is equivalent to generate more 
samples in the failure region that has high PDF value. Of course, when we 
estimate using samples that are not generated from , we cannot use the same 
estimator as in direct MCS and it needs to be modified to account for this fact. 

q

 
Suppose we are able to come up with a PDF )(xf  (called ‘importance sampling 
density’, ISD) such that the random samples drawn from it will lie frequently in 
the important region, and such that 
  
1. we can compute the value of )(xf  easily for any given x  
 
2. we can generate random samples from  easily f
 
3. the support of  (i.e., the region in f nR  over which ) covers that of 0>f

)()( xqFxI ∈     
 
Then, we can view the integral as  

 )]([)(
)(

)()()()( XRExdxf
xf

xqxhxdxqxhJ f=== ∫∫  

where )(/)()()( xfxqxhxR =  is called the ‘importance sampling quotient’. The 
subscript in the expectation is to denote that X  is now distributed as  rather 
than . The above equation suggests that we can estimate  by 

f
q J

∑
=

=≈
N

k
k

IS
N XR

N
JJ

1
)(1~  

where NkX k ,...,1: =  are i.i.d. as . Since  is an average of i.i.d. samples of f IS
NJ~

R , it has all the statistical properties as in direct MCS, i.e., it is unbiased, its 
variance is given by , and it converges to  with probability 1. This, of 
course, assumes that  is appropriately chosen such that 

NRf /][var J
f R  has finite variance 

under . f
 
The most important task in applying importance sampling is the construction of 
the ISD . If it is ‘good’ (we will discuss shortly what it means), then we can get 
tremendous improvement in efficiency compared to direct MCS. Otherwise, at 

f
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the other extreme, we may even end up with a heavily biased estimate (and it is 
worst if we do not even know the estimate is biased).  
 
The pre-requisite requirements of 1 and 2 for  often means that practically we 
need to construct  using conventional known distributions (e.g., Gaussian, 
exponential, etc., or a weighted sum of them). Thus, the usual procedure is to 
assume certain form of PDF (using known distributions) for and then choose 
the parameters based on information about the important region so that the 
samples drawn from  can be expected to lie frequently in the important region.  

f
f

f

f
 
4.1. Optimal Importance Sampling Density 
 
The (theoretical) optimal ISD corresponds to the one that leads to the least 
variance of  (and hence of IS

NJ~ R ). It turns out that the optimal choice of the ISD 
can be written explicitly and the least variance we can get is zero. The optimal 
ISD is given by 

∫
=

zdzqzh

xqxhxfo
)()(

)()()(   

i.e., it is just proportional to the integrand. The integral in the denominator serves 
as a normalizing constant so that  integrates to 1 (to be a valid PDF). So, with 
the optimal ISD, are we done? 

of

 
Of course not, since in practice this choice of ISD is not feasible, due to the 
following two reasons: 
 
1. We cannot evaluate  easily, since the denominator is an n -dimensional 

integral. In fact, had we know how to evaluate this integral efficiently, we don’t 
need to do importance sampling, since this integral is just the answer we 
want! 

of

 
2. We do not have an efficient method for generating random samples according 

to  (not to mention that we only know  up to a scaling constant, due to 
point 1). 

of of

 
Nevertheless, the result about the optimal ISD indicates that we should choose 
our ISD to have a shape as close to the integrand as possible, under our pre-
requisite constraints on . f
 
For reliability problems with )()( FxIxh ∈= , the optimal ISD is just the conditional 
PDF (given ): F

)|(
)(

)()()( Fxq
FP

xqFxIxfo =
∈

=  
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Again, we do not know how to evaluate  efficiently since we do not know  
and we do not have an efficient method for generating samples according to the 
conditional PDF (acceptance-rejection method can be applied but is far from 
being efficient for small ). But this suggests the capability of generating 
conditional samples play an important role in reliability analysis. Later we will 
discuss a powerful method called Markov Chain Monte Carlo (MCMC) that 
shows great promise for generating conditional samples, utilizing which we are 
able to come up with a method called Subset Simulation that also shows great 
promise for rare event simulation.    

of )(FP

)(FP

 
Next, we present one inequality that relates the estimation variance to the 
relative entropy between the optimal ISD and the actual ISD we use.  
 
4.2. Variance of estimator and relative entropy 
  
Definition: The relative entropy of a PDF  (relative) to  is defined as 2p 1p

xd
xp
xpxpppH ∫= )(
)(ln)(),(

1

2
212  

The relative entropy is commonly used as a measure for the difference between 
two PDFs. It is non-negative, as shown by using Jensen’s inequality and noting 
that  is concave: )ln(⋅

01ln
)(
)()(ln

)(
)(ln)(),(

2

1
2

2

1
212 ==≤=− ∫∫ xd

xp
xpxpxd

xp
xpxpppH  

Note, however, that  is not a valid metric, because it is not symmetric, i.e., 
. The relative entropy  can be viewed as the 

amount of information gained when we update (hypothetically) our uncertainty 
about 

),( ⋅⋅H
),(),( 2112 ppHppH ≠ ),( 12 ppH

X  from  (prior) to  (posterior). That is, suppose originally we think 
that 

2p 1p
X  is distributed as , but then after some process of gaining information 

we find out that it is actually distributed as . Then  represents the 
amount of information we gained from such process. 

1p

2p ),( 12 ppH

 
Back to importance sampling, note that the c.o.v. of the importance sampling 
estimator  can be written as  IS

NJ

N
IS

IS
∆

=δ  

where  is called the ‘unit c.o.v.’, i.e., the c.o.v. 
when . Then it can be shown that  

222 /][var][/][var JRRER fffIS ==∆
1=N

),(2 1 ffH
IS

oe≥+∆  
 
Proof: 
For simplicity we will omit dependence on x  in integrals or on X  in expectations. 
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J
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IS o
==××==+∆ ∫∫∫  

By writing  and using Jensen’s inequality, noting that 
 is convex, we get our desired result: 

)]/[exp(ln]/[ ffEffE ofof oo
=

)exp(⋅
),()]/[ln(2 1 ffHffE

IS
ooof ee =≥+∆  

 
The inequality relating the unit c.o.v. and the relative entropy has important use 
for investigating whether importance sampling is still applicable in high dimension 

 for reliability problems. Essentially, as  increases, it can happen that the 
relative entropy between  (to which 
n n

q )|( Fxqfo =  is proportional when restricted 
to ) and  grows without bound when the form of the latter is not chosen 
appropriately. Consequently, the importance sampling quotient 

F f
R  degenerates 

into a zero-infinity law that has infinite variance as ∞→n . 
 
4.3. Importance Sampling using design points 
 
Refer to Au, Papadimitriou & Beck (1999).  
 
4.4. High-dimensional problems 
 
Refer to Au (2001) or Au & Beck (2003). 
 
4.5. Importance Sampling for linear systems 
 
Refer to Au (2001) or Au & Beck (2001). 
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5. Markov Chain Monte Carlo Method 
 
Suppose we want to generate random samples from some distribution , but πf
 
1. We can only evaluate  up to a scaling constant. E.g., we know  is 

proportional to some non-negative function  (for which we can calculate its 
value) but  does not integrate to 1. Of course, 

πf πf
f

f )(xfπ  can be written as  

∫
=

zdzf

xfxf
)(

)()(π  

but still it is not easy to evaluate the normalizing constant in the denominator 
since it is a multi-dimensional integral. 
 

2.  does not correspond to any ‘known’ distribution and so we do not know 
how to efficiently generate samples from it. 
πf

 
This situation is frequently encountered in two important class of problems, 
namely, Bayesian updating and reliability/probabilistic failure analysis, as 
illustrated in the following two examples. 
 
Example 5.1. Bayesian model updating 
Suppose we have a model that makes prediction of a response },...,1:)({ miXyi =  
for a given set of uncertain parameters nRX ∈  and we also have the 
corresponding actual data . Assume the prediction model  }ˆ,...,ˆ{ 1 myyD =

iii Xyy ε+= )(ˆ          (5.1) 
where },...,1:{ mii =ε  are i.i.d. standard Gaussian (in the actual applications the 
variance of iε  should also be an uncertain parameter to be updated, but for the 
sake of illustration let’s fix it to 1 here). We want to update our probability model 
about X .  
 
Let M  denote the proposition containing prediction error model (5.1) and the 
prior PDF for X , which is assumed to be standard Gaussian centered at 0x . 
Then the posterior PDF of X  given the data  and D M  is given by, using Bayes’ 
Theorem, 

),|( MDxp  
)|(

)|(),|(
MDP

MxpMxDp
=  

( ) ⎥⎦
⎤

⎢⎣
⎡ −−×⎥

⎦

⎤
⎢
⎣

⎡
−−×= −

=

− ∑ 2
0

2/

1

22/ ||||
2
1exp)2()(ˆ

2
1exp)2(

)|(
1 xxxyy

MDP
n

m

i
ii

m ππ  

Note that we generally do not know the value of the normalizing constant 
 before we have solved the updating problem. Thus, in this example, we 

can evaluate efficiently 
)|( MDP

)|(),|()( MxpMxDpxf =  but not the normalizing 
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constant , which is equal to the integral of  (since )|( MDP f ),|( MDxp  must 
integrate to 1). 
 
On the other hand, although we know the form of , it is not trivial to generate 
samples of 

f
X  according to it because the relationship between x  and )(xyi  is 

often only known implicitly and could be quite complicated, rendering  a 
complicated function of 

f
x . 

 
Example 5.2. Conditional distribution given failure 
Probabilistic failure analysis is concerned with the likely scenarios that may occur 
when systems with uncertainties fail. Mathematically it corresponds to finding 
expectation of quantities of interest given that failure occurs, which necessitates 
the efficient generation of samples conditional on failure (or ‘conditional samples’ 
in short). On the other hand, in reliability analysis, the capability of efficiently 
computing failure probabilities is intimately related to the capability of efficiently 
generating samples conditional on failure. The conditional PDF is given by 

)(
)()()|(

FP
xqFxIFxq ∈

=  

Here, we can evaluate )()()( xqFxIxf ∈=  efficiently for a given x , but not the 
normalizing constant  (which in fact is the answer we need!). Regarding the  
generation of samples, although we can generate samples easily from 

)(FP
)(xq  

when it is chosen from some known class of distributions, the same is not true for 
)|( Fxq , due to the conditioning on . An acceptance-rejection algorithm can be 

applied but is far from being efficient, especially when  is small, because on 
average it requires  samples drawn from q  to get one sample lie in . 

F
)(FP

)(/1 FP F
 
We will discuss a class of methods called Markov Chain Monte Carlo (MCMC) 
method that allows us to generate samples according to the target PDF under 
the context we mentioned. One important message brought from this method is 
that, although it is difficult to efficiently generate independent samples according 
to the target PDF, it is possible, using a specially designed Markov Chain, to 
efficiently generate dependent samples that are at least asymptotically 
distributed as the target PDF (as the number of Markov steps increases).  
 
We will start with the simplest and original form of MCMC, called Metropolis 
algorithm. 
 
5.1. Metropolis Algorithm 
In this algorithm, we need to choose a ‘proposal PDF’ )|(* yxp  such that 
 
1. For a given y , )|(* yp ⋅  is a valid PDF 

2.  is symmetric, i.e., *p )|()|( ** xypyxp =  nRyx ∈∀ ,  
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3. we can efficiently generate samples from )|(* yp ⋅  for every y  
 
We are going to describe the algorithm for generating samples ,...2,1: =kX k  that 
will be seen forming a first order Markov Chain. To start the chain, first choose 

1X  by ‘some means’ (e.g, from some PDF that is close to the target PDF, or 
simply a fixed vector; we will discuss this later). Then, for ,...2,1=k , to generate 
the next sample 1+kX  from the current sample kX , 
 
Step 1. Generate a ‘candidate’ X~  from )|(*

kXp ⋅  

Step 2. Calculate 
)(
)~(

kXf
Xfr = , then 

Set 
⎩
⎨
⎧

−
=

+
+ },1min{1 probablitywith 

},1min{y probabilitwith ~

1
1 rX

rXX
k

k  

 
Note: 
1. the algorithm only involves ratio of the target PDF, and so does not require 

information about the normalizing constant 
 
2. In computer code, Step 2 can be implemented simply as 1) generate U  from 

a uniform PDF on [0,1]; 2) if rU < , set XX k
~

1 =+ , otherwise set kXkX =+1  
 
3. It is possible that the next sample is equal to the current sample, in the case 

when X~  is rejected. 
 
4. The proposal PDF  governs the distribution of the candidate and affects the 

transition of the chain from one state to another. A Gaussian PDF or a 
uniform PDF centered at the current sample is a common choice. The spread 
of 

*p

)|(* yxp  around y  affects how fast the chain can explore the parameter 
space and the dependence among samples: 

a. If the spread is too small, the acceptance rate is high, but the next 
sample (which is often taking the candidate) will be near the current 
one, increasing dependence 

b. If the spread is too large, the acceptance rate can be low, making the 
next sample identical to the current one, increasing correlation 

Thus, the choice of the spread of  should play a balance between 
acceptance and spatial correlation. It is commonly suggested to choose the 
spread of  to be at least a large as the spread of . 

*p

*p πf
 

5. A Markov chain is a sequence of random variables ..., 21 XX  that satisfies  
)|(),...,,|( 11111111 kkkkkkkkkk xXxXpxXxXxXxXp ======= ++−−++   
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i.e., given the present state, the future state is independent of the past states. 
See Ross (19??) or Doobs (19??) for Markov chain theory. 
  
5.1.1. Properties of the Metropolis chain 
For the Metropolis algorithm, Markov Chain Theory says that if the Markov chain 

,...}2,1:{ =kX k  is ‘ergodic’ (we will discuss this later), then 
  
1. If 1X  is distributed as the target PDF , then so are πf ,..., 32 XX  
 
2. Even if 1X  is not distributed as , the samples will still be asymptotically 

distributed as , in the sense that 
πf

πf
)()(lim xfxp

NXn π=
∞→

 

Here,  is called the limiting stationary PDF for the Markov chain. πf
 
Stationary chain & detailed balance 
We will prove the first claim, which is easier and will illustrate one important 
mechanism of MCMC. The second claim involves issues about ergodicity, which 
will be discussed from an implementation point of view (there are of course 
theoretical discussions available, e.g., Roberts & Casella, 1999). 
 
So, suppose kX ~  (‘~’ as a shorthand for ‘is distributed as’), we will show that πf

1+kX ~  as well. The proof is a direct consequence of a condition that the 
Metropolis chain satisfies, called ‘detailed balance’: 

πf

)()|()()|( || 11
xfxypyfyxp

kkkk XXXX ππ ++
= , nRyx ∈∀ ,  

where )|(|1
yxp

kk XX +
 denote the ‘transition PDF’ of the Markov chain that gives the 

conditional PDF for 1+kX  at x  given that yX k = . When the detailed balance 
holds,  is called the ‘stationary distribution’ of the Markov chain. πf
 
To shown the detailed balance, consider the transition PDF )|(|1

yxp
kk XX +

 for 
yx ≠ . According to the Metropolis algorithm, for yx ≠ , )|(|1

yxp
kk XX +

 is 

proportional to )|(* yxp  and )}(/)(,1min{ yfxfr = , and so 

}
)(
)(,1min{)|()|( *

|1 yf
xfyxpcyxp

kk XX =
+

 

where  is a normalizing constant. Multiplying both sides by c ∫= zdfff /π , 

∫
=

+ zdf
yf

yf
xfyxpcyfyxp

kk XX

)(
}

)(
)(,1min{)|()()|( *

|1 π     (5.2) 

To proceed, we note that for any , 0, >ba a
a
bb

b
a },1min{},1min{ ≡  (this identity is 

where the magic lies), which means that on the RHS of (5.2), 
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)(}
)(
)(

,1min{)(}
)(
)(,1min{ xf

xf
yf

yf
yf
xf

=  

and so, together with the symmetry )|()|( ** xypyxp = , detailed balance follows: 

)()|()(}
)(
)(

,1min{)|()()|( |
*

| 11
xfxyp

zdf
xf

xf
yf

xypcyfyxp
kkkk XXXX ππ ++

==
∫

 

for yx ≠ . For the case when yx = , detailed balance holds trivially, and therefore 
the Metropolis chain satisfies detailed balance.  
 
We are now ready to obtain the PDF for 1+kX . Using the theorem of total 
probability, 

)(
1

xp
kX +

 ∫ +
= ydypyxp

kkk XXX )()|(|1
 

∫ +
= ydyfyxp

kk XX )()|(|1 π  since πfX k ~  for stationary chain 

∫ +
= ydxfxyp

kk XX )()|(|1 π  due to detailed balance 

∫ +
= ydxypxf

kk XX )|()( |1π  

)(xfπ= , since 1)|(|1
=∫ +

ydxyp
kk XX  

and so 1+kX ~  when πf kX ~ . πf
 
Note: 
1. Detailed balance says that, in a stationary state (i.e., πfX k ~ ), the transition 

rate from x  to y  is the same as the transition rate from y  to x  for all x  and 
y  as the Metropolis chain steps forward. 

 
2. If we step backward along the Metropolis chain, i.e., following the sequence 

},...,,,{ 121 XXXX NNN −− , then the transition probability is )|(
1| xyp

kk XX +
. This 

backward transition probability is quite non-trivial to get from first principle 
according to the algorithm. However, if the detailed balance holds and the 
Metropolis chain is in a stationary state, using Bayes’ Theorem, 

)(
)()|(

)(
)()|(

)(
)()|(

)|( |||
|

11

1

1

1 xf
xfxyp

xf
yfyxp

xp
ypyxp

xyp kkkk

k

kkk

kk

XXXX

X

XXX
XX

π

π

π

π ++

+

+

+
===  

i.e., )|()|( || 11
xypxyp

kkkk XXXX ++
=  

which means that the transition PDF of the backward chain is identical to that 
of the forward chain. For this reason, detailed balance is also known as the 
‘reversibility condition’, because in this case under a stationary state the 
probabilistic property of the forward chain is identical to the backward chain, 
and such chain is called ‘reversible’.  
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Transient chain & Ergodicity 
We mentioned that, in the case when the chain is not started with πfX ~1 , the 
samlples will still be asymptotically distributed as , provided the Metropolis 
chain is ‘ergodic’ (in fact, even when 

πf

πfX ~1 , ergodicity is still needed for correct 
statistical estimation using a single chain, see later). In the study of stochastic 
processes, ergodicity deals with the question of whether a sample average (i.e., 
averaging along a single ensemble) will tend to the ensemble average (i.e., 
averaging across different ensembles, or trials of run) as the number of samples 
increases.  Ergodicity for Markov chains means that starting from any state, the 
chain will be able to visit the neighborhood of the starting state again infinitely 
many times (recurrence property) as the number of Markov steps  and 
there is a non-zero probability that it can visit any given state within a finite 
number of Markov steps (irreducibility property). Practically, ergodicity is 
concerned with whether the generated samples can populate sufficiently the 
regions in the parameter space over which  has significant probability content.  

∞→N

πf
 
Example 5.3. Reducible chain 
Suppose the support of  consists of two disconnected regions, say, D1 and 
D2; and the support of 

πf
)|(* yxp  around y  is small compared to the separation 

distance between D1 and D2. Then, when the chain is started from, say, D1, it is 
impossible to transit to a state in D2, since this necessitates a candidate X~  
generated in D2, which is impossible. In this case, the chain will ‘get stuck’ in D1, 
and so the distribution of the samples can only represent  conditional on D1. In 
fact, the chain started in D1 will (at best) have a limiting stationary PDF equal to 

πf

)|( 1Dxfπ . This corresponds to a ‘reducible’ situation, which is often the major 
concern when dealing with ergodicity (recurrence is often not a problem). 
Consequently, the chain is not ergodic and statistical estimation based on the 
samples along a single chain will be biased, because the information in D2 is not 
contained in the samples.  
 
In this example, even if πfX ~1  (that will mean that 1X  sometimes is generated 
in D1 and sometimes in D2), the chain is not ergodic, either. This can be 
reasoned intuitively because the chain can only develop in the region where it is 
initiated. But why were we able to show that if πfX k ~  then so is πfX k ~1+ ? 
Anything wrong in the proof? In this case, we can still check to see that both the 
detailed balance and )()(

1
xfxp

kX π=
+

 are still valid (an exercise to check). And 
this  does not contradict with the fact that the chain is not ergodic. It is because 

)()(
1

xfxp
kX π=
+

 only means that 1+kX  is distributed as  in an ‘ensemble 
sense’. To understand this, suppose we generate 

πf

πfX ~1 , and then we generate 

2X  from 1X  using the Metropolis algorithm. If we repeat different trials of this 
process (i.e., different ensembles), we get different samples of 2X , say, )1(

2X , 
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)2(
2X , … where the index in the superscript denotes the trial run number. The 

samples { )1(
2X , )2(

2X , )3(
2X ,…} will have a histogram that approximate , as can 

be guaranteed by a proof in the stationary case. In contrast, if we follow a 
particular chain (ensemble), say, the first chain, and observe 

πf

,...},,{ )1(
3

)1(
2

)1(
1 XXX , 

then they will only have a histogram that is confined to either D1 or D2, 
depending on whether )1(

1X  is in D1 or D2, respectively. This highlights that the 
detailed balance does not guarantee ergodicity even when the chain is 
stationary, because ergodicity is concerned about the behavior along any given 
chain, whereas detailed balance and )(

1
xp

kX +
 only involve ensemble average 

concept. The theoretical treatment of ergodicity can be quite involved, although 
the problem can often be solved by proper choice of proposal PDF (in not-so-
tough problems). 
 
5.1.2. Short historical notes 
The Metropolis algorithm presented here was due to the celebrated paper: 
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. 
(1953), “Equation of state calculation by fast computing machine”. Journal of 
Chemical Physics, 21:1087-91. The original algorithm was for discrete state-
space, where Metropolis et. al. dealt with calculating the properties of chemical 
substances based on statistical mechanics. There were of course many follow-up 
papers, but Hastings (1970, working on Bayesian statistics) later generalized the 
Metropolis algorithm to allow the proposal PDF to be non-symmetric, leading to 
the so called ‘Metropolis-Hastings algorithm’: Hastings, W.K. (1970), “Monte 
Carlo sampling methods using Markov chains and their applications”. Biometrika, 
57:97-109. 
  
There have been many variants of the algorithm with applications to different 
disciplines (e.g., image processing, biostatistics, Bayesian statistics, 
econometrics). Their common feature is that statistical averaging is done over 
Markov chain samples with the limiting stationary distribution equal to the 
specified target one. These algorithms are collectively known as Markov Chain 
Monte Carlo (MCMC) method. 
 
5.2. Metropolis-Hastings Algorithm 
The Metropolis-Hastings (M-H) algorithm allows the use of a non-symmetric 
proposal PDF, and is as follows: 
 
To generate 1+kX  from kX : 
Step 1. Generate a candidate sample X~  from )|(*

kXp ⋅  

Step 2. Calculate 
)|~(
)~|(

)(
)~(

*

*

k

k

k XXp
XXp

Xf
Xfr ×= , then 
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Set 
⎩
⎨
⎧

−
=

+
+ },1min{1 probablitywith 

},1min{y probabilitwith ~

1
1 rX

rXX
k

k  

 
The proof of detailed balance for the Metropolis-Hastings chain is left as an 
exercise. 
 
Note: 
1. The only modification is in the calculation of r  which now also involves the 

ratio of the proposal PDF. 
 
2. When the proposal PDF is symmetric, the Metropolis-Hastings algorithm 

reduces to the Metropolis algorithm.   
 
3. If )|(* yxp  does not depend on y , then the chain is not ‘adaptive’. In this 

case, the choice of  is similar to the choice of importance sampling density, 
although it is generally more difficult to have a good choice compared to a 
symmetric . [Exercise to show that if 

*p

*p )()|(* xfyxp π= , then 1≡r , the 
acceptance rate is 100% and all samples kX  are independent. But is it 
feasible to use such ?] *p

 
5.3. Statistical Estimation  
The samples },...,{ 1 NXX  generated according to the M-H algorithm can be used 
for statistical averaging similar to the case of direct Monte Carlo:  

∑∫
=

=≈=
N

k
kN Xh

N
SxdxfxhS

1
)(1)()( π  

 
5.3.1. Statistical properties of estimator 
In the following discussion, we assume that the chain is ergodic and . ∞<][ 2hEfπ

 
Expectation 
1. If πfX ~1 , i.e., the chain is stationary, then  is unbiased for every  

[Exercise to show] 
NS N

 
2. If 1X  is not distributed as , then  is biased for every , but is 

asymptotically unbiased as 
πf NS N
∞→N . 

 
Proof: 

∑
=

=
N

k
kN XhE

N
SE

1

)]([1][  
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We know that SXhE N →)]([  because NX  is asymptotically distributed as . 
But we need to show that the same is also true for . The proof is a direct 
application of the following proposition: 

πf

NS

Proposition: If the sequence }{ Rak ∈  converges to Ra∈  and ∑
=

=
k

i
ik a

k
b

1

1 , 

then . The term  is often called a Cesàro average (Billingsley, 1995, 
Section A30). The proof is left as an exercise. Hint: Use the fundamental 
definition of limit. 

abk → kb

 
Variance 
If πfX ~1 , i.e., the chain is stationary, then 

)1(
][var

]var[ γπ +=
N

h
S f

N  

where ∑
−

=

−=
1

1

)()1(2
N

k

k
N
k ργ  is a correlation factor,  

and 
][var

))(),(cov()( 11

h
XhXhk

f

k

π

ρ +=  is the correlation coefficient of  at  samples 

apart. 

h k

 
Proof: 

∑∑
==

=−−=−=
N

ji
ji

N

ji
jiNN XhXh

N
SXhSXhE

N
SSES

1,
2

1,
2

2 ))(),(cov(1)])()()([(1])[(]var[  

For the last summand, instead of summing with respect to , we can sum along 
its diagonal, i.e., we sum for 

ji,
)1(,...,,...,1, −+=+=+== Njikjijiji , and for each 

, i  goes from 1 to : k kN −

]var[ NS ∑∑∑
−

=

−

=
+

=

+=
1

1 1
2

1
2 ))(),(cov(1][var1 N

k

kN

i
kii

N

i
f XhXh

N
h

N π
 

Since the chain is stationary, ))(),(cov())(),(cov( 11 kkii XhXhXhXh ++ = , for 
, and so kNi −= ,...,1

]var[ NS ))(),(cov()(1][var 1

1
112 ∑

−

=
+−+=

N

k
k

f XhXhkN
NN

h
π  

and the proof is completed after algebra. 
 

Note: A sufficient condition for  as 0]var[ →NS ∞→N  is 0)(),(cov( 11 →+NXhXh  
as [Exercise to prove. Hint: relate ∞→N N/γ  to a Cesàro average]. 
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5.4. High-dimensional problems  
 
The original M-H algorithm may have 100% in high-dimensional problems, 
especially in reliability applications, but which can be solved by using a 
component-updating algorithm. See Au (2001), Au & Beck (2001). 
 
 
6. Subset Simulation 
6.1. Raw idea 
6.2. Algorithm 
6.3. Statistical properties of estimator 
 
Refer to Au (2001), Au & Beck (2001), Au & Beck (2003).  
 
 
7. First Passage Probability and Rice’s outcrossing theory 
 
7.1. First Passage Probability 
7.2. Up-crossing rate 
7.3. Rice’s formula 
7.4. Poisson approximation 
7.5. Random vibration of linear systems 
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