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Talk outline

• Motivation 
• Current state of knowledge 
• The main ideas in GW cosmology 

• GW “standard sirens” 
• Statistical arguments 
• Space-based approaches 

• Some recent ideas regarding neutron stars 
• Using tidal signatures 
• Using the hyper-massive NS  

• Summary
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Gravitational waves
• Gravitational waves are propagating 

oscillations of the gravitational field. 
• Travelling at the speed of light. 
• Composed of 2 polarisations. 
• Generated by time varying mass 

quadrupole (and higher) moment(s).
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This talk focuses on 
compact binary 

coalescence (CBC)
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Detection rates
LIGO-Virgo Collaboration, arXiv:1304.0670 (2013)

Figure 5: Network sensitivity and localization accuracy for face-on BNS systems with advanced
detector networks. The ellipses show 90% confidence localization areas, and the red crosses show
regions of the sky where the signal would not be confidently detected. The top two plots show the
localization expected for a BNS system at 80Mpc by the HLV network in the 2016–17 run (left)
and 2017–18 run (right). The bottom two plots show the localization expected for a BNS system
at 160Mpc by the HLV network in the 2019+ run (left) and by the HILV network in 2022+ with
all detectors at final design sensitivity (right). The inclusion of a fourth site in India provides good
localization over the whole sky.

Estimated EGW = 10�2M�c2 Number % BNS Localized
Run Burst Range (Mpc) BNS Range (Mpc) of BNS within

Epoch Duration LIGO Virgo LIGO Virgo Detections 5 deg2 20 deg2

2015 3 months 40 – 60 – 40 – 80 – 0.0004 – 3 – –
2016–17 6 months 60 – 75 20 – 40 80 – 120 20 – 60 0.006 – 20 2 5 – 12
2017–18 9 months 75 – 90 40 – 50 120 – 170 60 – 85 0.04 – 100 1 – 2 10 – 12
2019+ (per year) 105 40 – 80 200 65 – 130 0.2 – 200 3 – 8 8 – 28

2022+ (India) (per year) 105 80 200 130 0.4 – 400 17 48

Table 1: Summary of a plausible observing schedule, expected sensitivities, and source localization
with the advanced LIGO and Virgo detectors, which will be strongly dependent on the detectors’
commissioning progress. The burst ranges assume standard-candle emission of 10�2M�c2 in GWs

at 150Hz and scale as E1/2
GW. The burst and binary neutron star (BNS) ranges and the BNS

localizations reflect the uncertainty in the detector noise spectra shown in Fig. 1. The BNS detection
numbers also account for the uncertainty in the BNS source rate density [28], and are computed
assuming a false alarm rate of 10�2 yr�1. Burst localizations are expected to be broadly similar
to those for BNS systems, but will vary depending on the signal bandwidth. Localization and
detection numbers assume an 80% duty cycle for each instrument.
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Class. Quantum Grav. 27 (2010) 173001 Topical Review

Table 4. Compact binary coalescence rates per Mpc3 per Myra.

Source Rlow Rre Rhigh Rmax

NS–NS (Mpc−3 Myr−1) 0.01 [1] 1 [1] 10 [1] 50 [16]
NS–BH (Mpc−3 Myr−1) 6 × 10−4 [18] 0.03 [18] 1 [18]
BH–BH (Mpc−3 Myr−1) 1 × 10−4 [14] 0.005 [14] 0.3 [14]

a See footnotes in table 2 for details on the sources of the values in this table.

Table 5. Detection rates for compact binary coalescence sources.

IFO Sourcea Ṅlow yr−1 Ṅre yr−1 Ṅhigh yr−1 Ṅmax yr−1

NS–NS 2 × 10−4 0.02 0.2 0.6
NS–BH 7 × 10−5 0.004 0.1

Initial BH–BH 2 × 10−4 0.007 0.5
IMRI into IMBH <0.001b 0.01c

IMBH-IMBH 10−4 d 10−3 e

NS–NS 0.4 40 400 1000
NS–BH 0.2 10 300

Advanced BH–BH 0.4 20 1000
IMRI into IMBH 10b 300c

IMBH-IMBH 0.1d 1e

a To convert the rates per MWEG in table 2 into detection rates, optimal horizon distances of
33 Mpc/445 Mpc are assumed for NS–NS inspirals in the Initial/Advanced LIGO–Virgo networks. For
NS–BH inspirals, horizon distances of 70 Mpc/927 Mpc are assumed. For BH–BH inspirals, horizon
distances of 161 Mpc/2187 Mpc are assumed. These distances correspond to a choice of 1.4 M⊙ for
NS mass and 10 M⊙ for BH mass. Rates for IMRIs into IMBHs and IMBH–IMBH coalescences are
quoted directly from the relevant papers without conversion. See section 3 for more details.
b Rate taken from the estimate of BH–IMBH IMRI rates quoted in [19] for the scenario of BH–IMBH
binary hardening via three-body interactions; the fraction of globular clusters containing suitable
IMBHs is taken to be 10%, and no interferometer optimizations are assumed.
c Rate taken from the optimistic upper limit rate quoted in [19] with the assumption that all globular
clusters contain suitable IMBHs; for the advanced network rate, the interferometer is assumed to be
optimized for IMRI detections.
d Rate taken from the estimate of IMBH-IMBH ringdown rates quoted in [20] assuming 10% of all
young star clusters have sufficient mass, a sufficiently high binary fraction, and a short enough core
collapse time to form a pair of IMBHs.
e Rate taken from the estimate of IMBH-IMBH ringdown rates quoted in [20] assuming all young star
clusters have sufficient mass, a sufficiently high binary fraction, and a short enough core collapse time
to form a pair of IMBHs.

Where posterior probability density functions (PDFs) for rates are available, Rre refers
to the PDF mean, Rlow and Rhigh are the 95% pessimistic and optimistic confidence intervals,
respectively, and Rmax is the upper limit, quoted in the literature based on very basic limits set
by other astrophysical knowledge (see table 1). However, many studies do not evaluate the
rate predictions in that way, and for some speculative sources even estimates of uncertainties
may not be available at present. In these cases, we assign the rate estimates available in the
literature to one of the four categories, as described in detail in section 4. The values in all
tables in this section are rounded to a single significant figure; in some cases, the rounding
may have resulted in somewhat optimistic predictions.
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Motivation

• GW detection alone will be *pretty* good, but… 
• The detection and characterisation of a population of GW 

sources will allow 
• the study of the large-scale structure of the Universe. 
• us to infer the formation history of the massive black hole population. 
• precision mapping of the expansion history of the Universe. 
• the use of cosmic distance markers (standard sirens). 
• provide a “powerful” probe of the dark energy content of the universe.

6



The current state of knowledge
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Cosmic distance ladder

• Nearby objects are used to calibrate more distant 
measurements. 

• GW measurements would be independent of this ladder.

8
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Hubble diagram

Figure 3: The dimensionless luminosity distance DL/DH. The three curves are for the three
world models, (ΩM, ΩΛ) = (1, 0), solid; (0.05, 0), dotted; and (0.2, 0.8), dashed.
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• Redshift 

• Luminosity distance 

• Hubble parameter
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where νo and λo are the observed frequency and wavelength, and νe and λe are the emitted.
In special relativity, redshift is related to radial velocity v by

1 + z =

√

√

√

√

1 + v/c

1 − v/c
(9)

where c is the speed of light. In general relativity, (9) is true in one particular coordinate
system, but not any of the traditionally used coordinate systems. Many feel (partly for this
reason) that it is wrong to view relativistic redshifts as being due to radial velocities at all
(eg, Harrison, 1993). I do not agree. On the other hand, redshift is directly observable and
radial velocity is not; these notes concentrate on observables.

The difference between an object’s measured redshift zobs and its cosmological redshift
zcos is due to its (radial) peculiar velocity vpec; ie, we define the cosmological redshift as that
part of the redshift due solely to the expansion of the Universe, or Hubble flow. The peculiar
velocity is related to the redshift difference by

vpec = c
(zobs − zcos)

(1 + z)
(10)

where I have assumed vpec ≪ c. This can be derived from (9) by taking the derivative
and using the special relativity formula for addition of velocities. From here on, we assume
z = zcos.

For small v/c, or small distance d, in the expanding Universe, the velocity is linearly
proportional to the distance (and all the distance measures, eg, angular diameter distance,
luminosity distance, etc, converge)

z ≈
v

c
=

d

DH
(11)

where DH is the Hubble distance defined in (4). But this is only true for small redshifts! It
is important to note that many galaxy redshift surveys, when presenting redshifts as radial
velocities, always use the non-relativistic approximation v = c z, even when it may not be
physically appropriate (eg, Fairall 1992).

In terms of cosmography, the cosmological redshift is directly related to the scale factor
a(t), or the “size” of the Universe. For an object at redshift z

1 + z =
a(to)

a(te)
(12)

where a(to) is the size of the Universe at the time the light from the object is observed, and
a(te) is the size at the time it was emitted.

Redshift is almost always determined with respect to us (or the frame centered on us
but stationary with respect to the microwave background), but it is possible to define the
redshift z12 between objects 1 and 2, both of which are cosmologically redshifted relative to
us: the redshift z12 of an object at redshift z2 relative to a hypothetical observer at redshift
z1 < z2 is given by

1 + z12 =
a(t1)

a(t2)
=

1 + z2

1 + z1
(13)

3

H(z) = H0

�
�M(1 + z)3 + �k(1 + z)2 + ��(1 + z)3(1+w0+wa)e�3waz/(1+z)

DL = c(1 + z)

z�

0

dz�

H(z�)

Hogg, arXiv:astro-ph/9905116 (2000)



Standard Candles

• Type 1a supernovae 
progenitors are thought 
to be white dwarfs 
pushed over the 
Chandrasekhar limit.  

• They act as standard 
candles” of *equal* 
luminosity (to ~15%). 

• Calibration with 
Cepheids gives H0 = 
73.8 ± 2.4 km s-1 Mpc-1 
[Riess et al, ApJ (2011)]
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Rest et al arXiv:1310.3828 (2014)
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Figure 14. Hubble diagram for the combined PS1 and low-redshift sample. The bottom panel shows the di↵erence modulus residuals
versus the logarithmic redshift in order to visualize the the low-z SN Ia residuals.



Current knowledge
• The recently published 

Planck CMB results 
(combined with others) 
give the best constraints 
to date. 

• Consistent with the 
standard ⋀CDM model. 

• Gives H0 = 67.8 ± 0.9 
km s-1 Mpc-1 

• These (EM) results are 
likely to improve before 
GWs are competitive. 
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Planck Collaboration arXiv:1310.3828 (2015)Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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GW standard sirens
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• The inverse square law relates the received flux to the 
distance 

• All you need to know is that there are events/objects of equal 
intrinsic luminosity e.g. Type 1a Supernova 

• Gives relative distances so still need calibration

Standard Candles

13

4×brighter = 2×closer



• The inverse square law relates the received GW amplitude to 
the distance 

• GW compact-binary-coalescences of neutron stars or black 
holes (of given mass) will produce identical signals.  

• Gives absolute distances so no *calibration* required

GW standard sirens

14

2×louder = 2×closer



Schutz’s idea
• Schutz in 86’ proposed using compact-binary-coalescences as 

“standard sirens”[Schutz, Nature (1986)]. 

• Phase measurement gives redshifted chirp-mass 

• Amplitude gives ratio of redshifted chirp-mass5/3 with luminosity 
distance DL. 

• “Self-Calibrating” sources but no redshift.
15

-1400 -1200 -1000 -800 -600 -400 -200
t

-1.0

-0.5

0.5

1.0
hHtL

M = M�3/5

� =
m1m2

M2
fn(DL, Mz)

fn(t; Mz)

Mz = M(1 + z)



    ,    degeneracy

• The problem is that we 
only get DL and the 
redshifted mass 

• We need EM 
measurements of 
redshift to break the 
degeneracy. 

• Therefore we need host 
galaxy identification.
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344 K. Hurley et al.

Figure 1. The original IPN error trapezium (dashed line), the 3σ refined
error ellipse for the position of GRB 051103 (solid line) and the fields of the
region studied using KPNO (large squares). The asterisk indicates the centre
of the ellipse and the most likely arrival direction of the burst. Approximately
65 arcmin2 of the ellipse are contained within the old error box. These are
imposed upon an image of the area surrounding M81 from the Digital Sky
Survey. The possibility that this burst came from the inner disc of M81 is
firmly ruled out. However, the brightest GALEX UV knots noted by Ofek
et al. (2006) are within the ellipse. Lipunov et al. (2005b) noted the presence
of two galaxies within the initial error box, PGC 2719634 and PGC 028505.
The former galaxy lies at the 18 per cent confidence contour of the ellipse,
and remains a plausible host candidate, while the latter lies at the 0.03 per
cent contour, and is unlikely to be the host.

area 104 arcmin2. The chi-square for the error ellipse centre is 0.9
for three degrees of freedom (d.o.f.; five annuli minus two fitted
coordinates). The area of the initial error box was 240 arcmin2.1

The initial error box and the final error ellipse are shown in Fig. 1.

3 TIME H ISTO RY

The RHESSI time history of GRB 051103 is shown in the top panel
of Fig. 2. A distinctive signature of all three previously observed
giant SGR flares within our Galaxy and the Large Magellanic Cloud
(LMC) to date is the periodic extended component following the
initial short-duration peak. Among these three events, the periods of
this extended tail have clustered around a narrow range of 5–8 s and
also have a relatively narrow range of total isotropic energy releases
of 1–4 × 1044 erg. This signal lasts for many minutes following
the bursts but falls off rapidly after a few hundred seconds. While
extended emission is frequently detected following cosmological
short-hard bursts, such emission is not periodic. Therefore, detection
of a periodic component of emission would be considered a strong
confirmation of an SGR origin.

None of the IPN light curves shows obvious evidence for ex-
tended emission (pulsed or otherwise) following the burst. How-
ever, it is conceivable that a marginally detected signal could be
present within the noise. To search for such a component, we ac-
quired Swift–BAT data for GRB 051103 (binned at 64 ms) and used
the Lomb (1976) periodogram to calculate the relative power in the

1 A typographical error in GCN 4197 incorrectly gave the area as
120 arcmin2.

Figure 2. Time history of GRB 051103, and evolution of the spectrum. The
top plot shows the dead-time corrected RHESSI light curve (60 keV–3 MeV)
with 1-ms time resolution, starting at 09:25:42.184 UT. The background
count rate is 0.55 counts ms−1 and has not been subtracted. The time history
has an e-folding rise time of 1.2 ± 0.04 ms, an e-folding decay time of
28.6 ± 0.6 ms and a T90 of 100 ± 4 ms. The middle and bottom plots show
the evolution of the best-fitting peak spectral energy and power-law index
for the CPL model. The black points are RHESSI only, while the grey points
are joint fits between RHESSI and Konus-Wind.

signal following the burst at periods up to about 20 s. We created
periodograms for all of the four BAT energy channels, which cover
the energy range 15–350 keV (and for combinations of channel
sums) and for various time ranges following the emission (ranging
from the first 60 s to the first 300 s.) To assess the significance of
any peaks in the power spectrum, we performed a Monte Carlo
analysis by repeatedly randomizing the order of the 64 ms time bins
for each data set over the range of interest and measuring the rate
of occurrence of independent peaks above various power levels. We
identified no peaks with greater than 98 per cent significance in any
channel or time range.

This non-detection is expected. To assess the general detectability
of periodic post-flare emission from extragalactic giant magnetar

C⃝ 2010 The Authors. Journal compilation C⃝ 2010 RAS, MNRAS 403, 342–352

Gamma-ray bursts
• GRBs represent an EM counterpart with redshift obtained 

from the host galaxy. [Dalal et al PRD (2006), Nissanke et al ApJ (2010), Zhao et al 
PRD (2011)]
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M81

Zhao et al PRD (2010)

!w0 ¼ 0:064; !wa ¼ 0:388: (35)

We find that the values of !w0 and !wa become much
smaller in this case. The two-dimensional uncertainty con-
tour of w0 and wa is also plotted in Fig. 3 (black curve, i.e.,
line 1, in the left panel). This figure shows that there is
correlation between the parameters w0 and wa. Recall that
a goal of the dark energy programs is to test whether
dark energy arises from a simple cosmological constant,
(w0 ¼ "1, wa ¼ 0). For a given data set we can do better
(as far as excluding the cosmological constant model is
concerned) than simply quoting the values of !w0 and
!wa. This is because the effect of dark energy is generally
not best constrained at z ¼ 0. For the phenomenological
form of the EOS of the dark energy wðzÞ ¼ w0 þ
waz=ð1þ zÞ, the constraint on wðzÞ varies with the redshift
z. So, similar to [6], we can define the best pivot redshift,
denoted as zp, where the uncertainty in wðzÞ equals the
uncertainty in a model that assumes wa ¼ 0. In this
paper, we denote the EOS at this best pivot redshift as
wp & wðzpÞ. The best pivot redshift zp can be calculated

by zp ¼ "1=ð1þ !wa

!!w0
Þ, where ! is the correlation coeffi-

cient of w0 and wa. The value of !wp is calculated by

!wp ¼ !w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" !2

p
. In this case (two free parameters),

the results for zp and !wp are

zp ¼ 0:188; !wp ¼ 0:019: (36)

The value of !wp as well as that of !wa are commonly
used to describe the detection ability of the experiments
[6].
On the other hand, we can also fix the values of the

parameters (w0, wa) to be their fiducial values, and only
consider ("m, "k, h0) as free parameters. By using the
results in Table I, we obtain

!"m ¼ 0:021; !"k ¼ 0:087;

!h0 ¼ 5:48' 10"3: (37)

Again we find that the values of these errors, especially the
values of !"m and !"k, are much smaller that those in
Eq. (34). These results show that the GW standard sirens
can constrain the dark energy parameters rather well, on
condition that we can break the strong degeneracy between
the parameters (w0, wa) and the parameters ("m, "k, h0).
In the next subsection, we will find that this can be realized
if we consider the CMB observations as a prior.

FIG. 3 (color online). The two-dimensional uncertainty contours of the dark energy parameters w0 and wa in the case with uniform
distribution.

TABLE II. GW Fisher matrix in the case with nonuniform distribution.

w0 wa "m "k h0

w0 0:256 794' 104 0:427 648' 103 0:731 269' 104 0:244 368' 104 0:194 634' 105

wa 0:427 648' 103 0:762 633' 102 0:129 200' 104 0:399 934' 103 0:303 753' 104

"m 0:731 269' 104 0:129 200' 104 0:219 941' 105 0:682 599' 104 0:529 628' 105

"k 0:244 368' 104 0:399 934' 103 0:682 599' 104 0:234 666' 104 0:186 267' 105

h0 0:194 634' 105 0:303 753' 104 0:529 628' 105 0:186 267' 105 0:162 814' 106
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FIG. 3 (color online). The two-dimensional uncertainty contours of the dark energy parameters w0 and wa in the case with uniform
distribution.

TABLE II. GW Fisher matrix in the case with nonuniform distribution.

w0 wa "m "k h0

w0 0:256 794' 104 0:427 648' 103 0:731 269' 104 0:244 368' 104 0:194 634' 105

wa 0:427 648' 103 0:762 633' 102 0:129 200' 104 0:399 934' 103 0:303 753' 104

"m 0:731 269' 104 0:129 200' 104 0:219 941' 105 0:682 599' 104 0:529 628' 105

"k 0:244 368' 104 0:399 934' 103 0:682 599' 104 0:234 666' 104 0:186 267' 105

h0 0:194 634' 105 0:303 753' 104 0:529 628' 105 0:186 267' 105 0:162 814' 106
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Schutz’s method
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FIG. 3: Two dimensional posterior distributions for the sky position of a sample source as observed by the HLV network (left),
the HLVJ network (centre) or by the HLVJI network (right). The source signal-to-noise ratios for this particular injection are
H:7.1 L:7.5 V:8.5 J:7.1 I:7.0. The remaining parameters are given in Table I. In both panels, the cross indicates the location of
the GW real host. The (coloured) dots indicate the galactic population identified as consistent with the GW event, colourcoded
according to their redshift while the black dots indicate all the galaxies within the field of view.Left panel: two dimensional
posterior distribution for ↵ and � for the HLV network for which ⇢network ' 13.4. The contours indicate the 95% and 75%
confidence intervals. The 95% confidence area is equal to 14.8 deg2 giving a total number of possible hosts of 600. Centre

panel: two dimensional posterior distribution for ↵ and � for the HLVJ network for which ⇢network ' 15.1. The contours
indicate the 95% and 75% confidence intervals. The 95% confidence area is equal to 3.9 deg2, within which the number of
possible hosts identified is 339. Right panel: two dimensional posterior distribution for ↵ and � for the HLVJI network for
which ⇢network ' 17.7. The contours indicate the 95% and 75% confidence intervals. The 95% confidence area is equal to 2.2
deg2, within which the number of possible hosts identified is 230.

DL/Mpc z dec/rad R.A./rad ◆/rad  /rad M/M� ⌘ ⇢H ⇢L ⇢V ⇢J ⇢I
313 0.069381 0.435262 2.142747 0.339614 0.519744 6.350444 0.178603 7.1 7.5 8.5 7.1 7.0

TABLE I: Summary of the properties of the source to which the results presented in the subsection refer.
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FIG. 4: Top panels: joint two dimensional posterior distributions for the redshift and for h of the same source as in Fig. 3
as observed by the HLV network (left), the HLVJ network (centre) or by the HLVJI network (right). The star indicates the
indicates the real value of the redshift and of h. Bottom panels: joint two dimensional posterior distributions for h and cos ◆.
The star indicates the injection value. In all panels, the contours indicate the 95%, 75%, 50%, 25% and 5% confidence intervals.
In all cases it is evident the strong correlation between h and z, which is an obvious consequence of Eq.(7), and between h
and cos ◆. This last degeneracy is just the translation of the known DL–◆ degeneracy that ultimately is the limiting factor
in the determination of the parameters appearing in the amplitude of the GW. Moreover, the distributions are multimodal,
corresponding to the di↵erent combinations of h, z and cos ◆ that give constant DL. The accuracy of the estimation of the
redshift is similar for all networks. However, it is noticeable the increase in resolving power for cos ◆ when more detectors are
considered.

for ↵ and � for the two networks under consideration for the source whose parameters are given in Table I. The

Galaxy catalogues
• Del Pozzo extended 

the Schutz idea to 
make use of galaxy 
catalogues to identify 
hosts [Del Pozzo PRD (2012)]. 

• The redshift can then 
be obtained. 

• Any confusion on 
between host galaxies 
is averaged out with 
many sources.

19

Del Pozzo PRD (2012)

H0 to ~few% with 50 sources



Statistical arguments
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Statistical properties
• Idea first proposed by Marković 93’ and Finn & Chernoff 93’ 

to use the distribution of measured SNRs. [Markovic PRD (1993), Finn & 
Chernoff ApJ (1993), Finn PRD (1996)]
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Statistical properties
• The idea was expanded upon by Taylor et al 2011[Taylor et al PRD 

(2011), Taylor et al PRD (2012)] 

• Where the mass distribution and star formation rate are 
included in the model.

22
Taylor et al PRD (2012)
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FIG. 1: Recovered 1D posterior distributions for H0 (left), σNS (centre) and µNS (right), computed for one realization. The black lines
represent best-fit Gaussian distributions to H0, ln(σNS) and µNS, which were obtained via a least-squares fitting procedure. The vertical
lines indicate the values of these parameters used to generate the data set.
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FIG. 2: Recovered 2D posterior distribution in H0 and µNS

space, showing a correlation between these recovered parameters.
The model parameter values used to generate the data are the
reference values. There appears to be negligible correlation
between σNS with H0 or µNS.

parameters. Given the low redshift range that a second-
generation network is sensitive to, it is not surprising
that the matter-density and merger-rate evolution were
not constrained.
The recovered 1D posterior distributions in the other

parameters are shown in Fig. 1 for a typical realization
of the set of observed events. We have verified that these
marginalized distributions are consistent with those ob-
tained when exact knowledge of the intrinsic ṅ0 is as-
sumed. We found that the 1D posterior distributions for
H0, ln(σNS) and µNS were well fit by Gaussian distribu-
tions of the form A exp (−(x− µ)2/2σ2). These best-fit
Gaussians are also shown in the Figure. Although the
distributions do not peak at the model parameters used
to generate the data, those values are consistent with the
mean and width of the recovered distributions.
In Fig. 2, we show the corresponding 2D posterior dis-

tribution in H0 and µNS parameter space. We see that
a correlation exists between these parameters. Given a
cataloged DL value, a low value of H0 will imply a low

model-dependent redshift. When this redshift is used
to compute M from Mz, we calculate a large value of
the chirp mass, which implies a chirp mass distribution
(and hence a neutron-star mass distribution) centered at
larger values. σNS simply encodes the width of the mass
distribution around the mean, so on average it should
have no effect on H0 and µNS calculations and indeed
we found that σNS showed no correlation with the other
model parameters.
It is clear from Fig. 1 that the parameters of the Gaus-

sian fits provide a useful way to characterize the recov-
ered distributions. We can then describe the recovered
distributions in terms of two best-fit parameters i.e. the
Gaussian mean, µ, and Gaussian half-width, σ.

B. Random spread of best-fit parameters

1. No errors in data catalog

To explore the spread in the best-fit parameters of the
recovered posteriors over different realizations of the data
catalog, we generated 100 different realizations, keeping
the intrinsic parameter values the same for each.
In each case, we fit a Gaussian to the 1D posteriors

and record the mean, µ, standard deviation, σ, and the
“error” in the mean. This last quantity is the number
of standard deviations that the mean is offset from the
intrinsic value, i.e. ∆X = (µ − X)/σ, where X is the
value of the parameter used to generate the catalog [50].
A ±2σ offset encloses ∼95% of the Gaussian probability
distribution, so we would reasonably expect most of the
realizations to lie within this range.
Figure 3 shows the distributions of the Gaussian-fit

standard deviations and “errors” for H0, ln(σNS) and
µNS over 100 realizations of the AdLIGO-network data
catalog. The distribution of the Gaussian-fit means for
each parameter roughly resemble their respective poste-
riors, and the distribution of Gaussian standard devia-
tions also appears approximately Gaussian. As we would
have hoped, most of the realizations have a best-fit mean

H0 to ~10% 
with 100 
sources



Using tidal signatures

23



Neutron star Equation of State

• The equation of state 
(EOS) specifies the 
pressure of neutron star 
matter at a given density. 

• Expect a single equation 
of state to describe all 
(cold) neutron stars 

• It’s not crazy to think that 
the Neutron-star EOS will 
be well-understood in the 
era of third-generation 
GW detectors [Del Pozzo et al 

PRL (2013)].

24

Demorest et al, Nature (2010)
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Tidal deformation
• Each neutron star’s tidal field deforms the other star. 
• The EOS sets how a neutron star of given mass responds. 
• Tidal deformation modifies orbital energy and GW luminosity, 

contributing to the GW phase evolution:
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Tidal deformation
• Each EOS will provide 

a different level of 
deformation. 

• Hence a different level 
of GW phasing. 

• Also a different 
dependence on NS 
mass 

• Tidal deformability is a 
function of the Love 
number k2
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Hinderer et al PRD (2010)

of a black hole (m=R ¼ 0:5) regardless of the EOS-
dependent quantity y [17,18].
Normal matter EOS behave approximately as polytropes

for large compactness. However, for smaller compactness,
the softer crust becomes a greater fraction of the star, so the
star is more centrally condensed and k2 smaller. For strange
quark matter, the EOS is extremely stiff near the minimum
density, and the star behaves approximately as an n ¼ 0
polytrope for small compactness. As the central density
and compactness increase, the softer part of the EOS has
a larger effect, and the star becomes more centrally
condensed.
The parameter that is directly measurable by gravita-

tional wave observations of a binary neutron-star inspiral is
proportional to the tidal deformability !, which is shown
for each candidate EOS in Fig. 2. The values of ! for the
candidate EOS show a much wider range of behaviors than
for k2 because ! is proportional to k2R

5, and the candidate
EOS produce a wide range of radii (9.4–15.5 km for a
1:4M" star for normal EOS and 8.9–10.9 km for the SQM
EOS). See Table I.
For normal matter, ! becomes large for stars near the

minimum mass configuration at roughly 0:1M" because
they have a large radius. For masses in the expected mass
range for binary inspirals, there are several differences
between EOS with only npe" matter and those with con-
densates. EOS with condensates have, on average, a larger
!, primarily because they have, on average, larger radii.
The quark hybrid EOS ALF1 with a small radius (9.9 km
for a 1:4M" star) and the nuclear matter only EOSs MS1
andMS2 with large radii (14.9 and 14.5 km, respectively, at
1:4M") are exceptions to this trend.

TABLE I. Properties of a 1:4M" neutron star for the 18 EOS
discussed in the text.

EOS R (km) m=R k2 !ð1036 g cm2 s2Þ
SLY 11.74 0.176 0.0763 1.70
AP1 9.36 0.221 0.0512 0.368
AP3 12.09 0.171 0.0858 2.22
FPS 10.85 0.191 0.0663 1.00
MPA1 12.47 0.166 0.0924 2.79
MS1 14.92 0.139 0.110 8.15
MS2 13.71 0.151 0.0883 4.28

PS 15.47 0.134 0.104 9.19
BGN1H1 12.90 0.160 0.0868 3.10
GNH3 14.20 0.146 0.0867 5.01
H1 12.86 0.161 0.0738 2.59
H4 13.76 0.150 0.104 5.13
PCL2 11.76 0.176 0.0577 1.30
ALF1 9.90 0.209 0.0541 0.513
ALF2 13.19 0.157 0.107 4.28

SQM1 8.86 0.233 0.098 0.536
SQM2 10.03 0.206 0.136 1.38
SQM3 10.87 0.190 0.166 2.52
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FIG. 2. Tidal deformability ! of a single neutron star as a
function of neutron-star mass for a range of realistic EOS. The
top figure shows EOS that only include npe" matter; the middle
figure shows EOS that also incorporate #=hyperon=
quark matter; the bottom figure shows strange quark matter
EOS. The dashed lines between the various shaded regions
represent the expected uncertainties in measuring ! for an
equal-mass binary inspiral at a distance of D ¼ 100 Mpc as it
passes through the gravitational wave frequency range 10–
450 Hz. Observations with Advanced LIGO will be sensitive
to ! in the unshaded region, while the Einstein Telescope will be
able to measure ! in the unshaded and light shaded regions. See
text.
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EOS effect on waveforms
• The presence of matter modifies the late-inspiral, merger, and 

post-merger GW signals: the high-frequency part of the 
coalescence.
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plate, halting the accumulation of signal-to-noise ratio.
The phase contributions to binary neutron stars of various
masses from a range of realistic tidal deformabilities are
plotted in Fig. 4.
The post-Newtonian formalism itself is sensitive to

high-order corrections at the frequencies at which the tidal
effect becomes significant; as reference, we show in Fig. 4
the phase difference between the 3.0PN and 3.5PN expan-
sions, as well as that from varying the form of the post-
Newtonian Taylor expansion from T4 to T1.4 An accurate
knowledge of the underlying point-particle dynamics
will be important to resolve the effects of tidal
deformation on the gravitational wave phase evolution at
these frequencies.
The half-cycle or more contribution to the gravitational

wave phase at relatively low frequencies suggests that this
effect could be measurable. Flanagan and Hinderer [11]
first calculated the measurability for frequencies below
400 Hz, where the approximations leading to the tidal
phase correction are well justified. We extend the same
computation of measurability to a range of masses and
mass ratios. We take noise curves from the projected NS-
NS optimized Advanced LIGO configuration [45], as well
as a proposed noise spectrum of the Einstein Telescope
[46]. These noise curves are representative of the antici-
pated sensitivities of the two detectors. Our results do not
change significantly for alternate configurations which
have similar sensitivities in the frequency range of interest.
We also extend the computation to a slightly higher

cutoff frequency. As estimated in the Appendix, our cal-
culation should still be fairly robust at 450 Hz, as the
contributions to the phase evolution from various higher-
order effects are Oð10%Þ of the leading-order tidal contri-
bution. The uncertainty in the phase contribution from a
given EOS is therefore significantly smaller than the order
of magnitude range of phase contributions over the full set
of realistic EOS.
The rms uncertainty !~! in the measurement of ~! is

computed using the standard Fisher matrix formalism
[47]. Assuming a strong signal h and Gaussian detector
noise, the signal parameters "i have probability distribu-
tion pð"iÞ / expð#ð1=2Þ"ij#"

i#"jÞ, where #"i ¼ "i # "̂i

is the difference between the parameters and their best-fit
values "̂i and "ij ¼ ð@h=@"i; @h=@"jÞ is the Fisher infor-
mation matrix. The parentheses denote the inner product
defined in [47]. The rms measurement error in "i is given
by a diagonal element of the inverse Fisher, or covariance,

matrix: !"i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"#1Þii

p
.

Using the stationary phase approximation and neglect-
ing post-Newtonian corrections to the amplitude, the
Fourier transform of the waveform for spinning point
masses is given by ~hðfÞ ¼ Af#7=6 expði#Þ, where the

FIG. 4 (color online). The reduction in accumulated gravita-
tional wave phase due to tidal effects, $3:5;PPðfGWÞ #
$3:5;!ðfGWÞ, is plotted with thick lines as a function of gravita-
tional wave frequency, for a range of ! appropriate for realistic
neutron-star EOS and the masses considered. The 3.5 post-
Newtonian TaylorT4 PN specification is used as the point-
particle reference for the phase calculations. For reference, the
difference in accumulated phase between 3.0 and 3.5 post-
Newtonian orders of T4 (thin dashed line), and the difference
between 3.5 post-Newtonian T4 and 3.5 post-Newtonian T1 (thin
dotted line) are also shown. Phase accumulations are integrated
from a starting frequency of 10 Hz.

4For an explanation of the differences between T4 and T1, see
[43,44].
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Breaking M-z degeneracy
• Rest-frame waveform phase evolution with tidal contributions: 

(leading order, equal mass system) 
• Tidal terms are formally 5 and 6PN order 

• Inference on the detected waveform allows us to estimate M 
and z.

28
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Redshift measurement

• For 3rd generation 
detectors the GW signal 
alone can be used to 
determine the redshift of 
the source. 

• Even in the worst case, 
redshift uncertainties can 
be constrained to ~40% at 
z < 1 and in the best case 
~8%.
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3

tidal deformability parameter expressed graphically in Fig. 2
of [17]. Our approach models this relationship as a first-order
Taylor expansion around the canonical NS mass value such
that �(m) = �1.4 + (d�/dm)1.4(m � 1.4M�) where �1.4 and
(d�/dm)1.4 are the values of the tidal deformability parame-
ter and its derivative with respect to mass, both evaluated at
m = 1.4M�.

We now highlight the fundamental feature of this work.
With the addition of the tidal phase components to the total
GW phase such that ( f ) =  PP( f )+ tidal( f ) the waveform is
no longer invariant under the type of transformation discussed
above. The point-particle PN phase as measured at the detec-
tor is a function of the redshifted chirp massMz and luminos-
ity distance dL in contrast to the tidal phase component which
contains terms dependent upon the un-redshifted rest-frame
mass components m1 and m2. The degeneracy between the
mass parameters and the redshift is therefore broken and one
can now theoretically measure both sets of quantities inde-
pendently of one another. Essentially, the NS size provides a
fixed scale-length that is imprinted on the GW waveform. The
ability to perform this measurement is based on the assump-
tion that one knows or has a very well constrained NS EOS.
As shown in [20], in the advanced detector era, departures
from the point-particle limit of the GW waveform as the stars
approach their final plunge and merger will place strong con-
straints on the EOS-dependent tidal response of neutron stars.
In the 3rd generation GW detector era, specifically the ET [16],
the subset of high-SNR BNS signals from local galaxies will
provide even tighter constraints. The addition of future EM
observational constraints on the EOS (as can be seen currently
in [30, 31]) will also contribute to a well-understood NS EOS
by the ET era.

The choice of upper cut-o↵ frequency for our model is an
important issue. The standard approach to tidal e↵ects on GW
waveforms has been to use only the Newtonian tidal correc-
tion term and to truncate the signal corresponding to a rest-
frame GW frequency of 450 Hz. The primary reason that
such a choice has been made is to limit the contributions
to the phase evolution from various higher order e↵ects to
<10%. With the addition of the 1PN tidal phase correction,
and neglecting the small known higher-multipole contribu-
tions [32], the tidal description is limited by nonlinear and
resonant tidal e↵ects [33] at the end of inspiral. Concurrently,
the PN formalism also breaks down at the ISCO frequency
fISCO = (63/2⇡M)�1 (⇠1500 Hz for 1.4M� BNS systems)
where the secular approximation, that the mode frequency is
large compared to the orbit frequency, also becomes invalid.
However, recent numerical relativity (NR) simulations [34–
36] show that EOS e↵ects can be accurately modelled in the
late inspiral, and that the waveform contains an EOS signa-
ture that is amenable to analytic modelling. In anticipation
of future analytical models valid up to the merger phase, we
choose to use the ISCO as our cut-o↵ frequency, noting that
this is applied using un-redshifted mass in the source’s local
frame.

The standard Fisher matrix formalism [37, 38] allows us to
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FIG. 1. The fractional uncertainties in the redshift as a function of
redshift obtained from the Fisher matrix analysis for BNS systems
using 3 representative EOSs, APR [40], SLY [41] and MS1 [42]. In
all cases the component NSs have rest masses of 1.4M� and wave-
forms have a cut-o↵ frequency equal to the ISCO frequency (as de-
fined in the BNS rest-frame). We have used a cosmological param-
eter set H0 = 70.5 kms�1Mpc�1, ⌦m = 0.2736, ⌦k = 0,w0 = �1
to compute the luminosity distance for given redshifts and have as-
sumed detector noise corresponding to the ET-D [16, 39] design (a
frequency domain analytic fit to the noise floor can be found in [43]).

compute the uncertainties associated with the measurement of
a set of signal parameters. In the large SNR regime under the
assumption of Gaussian noise the signal parameters ✓ have
probability distribution p(�✓) / exp(�(1/2)�i j�✓i�✓ j), where
�✓i = ✓i� ✓̂i and ✓̂i are the best fit parameter values. The Fisher
matrix �i j is computed via �i j = (@h/@✓i, @h/@✓ j) where the
brackets in this case indicate the noise weighted inner prod-
uct. The expected errors in the measurement of the parameter
set �✓ are then defined by the square root of the diagonal el-
ements of the inverse Fisher matrix. We follow [25] in our
treatment of the parameter estimation analysis for BNS GW
signals with the addition of the redshift z as a parameter. We
therefore use ✓ = (lnA, tc, �c, lnMz, ⌘, z) as our independent
parameters where we have absorbed all amplitude informa-
tion in to a single parameterA via h̃( f ) = A f �7/6e�i ( f ). The
expected SNR of a given BNS signal is dependent upon the
nuisance parameters '. For simplicity we have computed our
results using the ET-D detector design configuration [16, 39]
assuming an SNR that has been appropriately averaged over
each of the 4 constituent angles of '. The detection range of
ET for BNS systems is z⇡1 for such an angle averaged signal
and an SNR threshold of 8. For an optimally oriented system
at the same SNR threshold the horizon distance is z ⇡ 4.

Results—The results of the analysis with respect to the un-

Messenger & Read PRL (2011)



Cosmological implications

• The uncertainty we predict 
for the redshift is O(10s%) 
for all sources, but we will 
have O(103 - 107) sources! 

• Independent of the cosmic 
distance ladder so immune 
to its potential systematic 
errors. 

• We will have our own 
issues with relation to 
calibration.
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FIG. 1: The left panel shows the range of the Einstein Telescope for inspiral signals from binaries as a function of the intrinsic
(red solid line) and observed (blue dashed line) total mass. We assume that a source is visible if it produces an SNR of at least
8 in ET. The right panel shows a realization of the source catalogue showing the measured luminosity distance (inferred from
GW observation of neutron star-black hole mergers) versus their red-shift (obtained by optical identification of the source).
This catalogue is then fitted to a cosmological model.

a standard siren, in the form of a chirping signal (i.e., a
signal whose frequency increases as a function of time)
from the coalescence of compact stars (i.e., neutron stars
and black holes) in a binary. The basic reason for this is
that the gravitational-wave (GW) amplitude depends on
the ratio of a certain combination of the binary masses
and the luminosity distance. For chirping signals GW
observations can measure both the amplitude of the sig-
nal and the masses very accurately and hence infer the
luminosity distance.

Let us first recall in some detail how we might mea-
sure the luminosity distance. We will first assume that
the source is located close-by, i.e., its redshift z ⇧ 1,
although we will later relax this condition.

Gravitational waves are described by a second rank
tensor h�⇥ , which, in a suitable coordinate system and
gauge, has only two independent components h+ and h⇥,
hxx = �hyy = h+, hxy = hyx = h⇥, all other compo-
nents being zero. A detector measures only a certain
linear combination of the two components, called the re-
sponse h(t) given by

h(t) = F+(�, ⌃, ⌅)h+(t) + F⇥(�, ⌃, ⌅)h⇥(t), (1.3)

where F+ and F⇥ are the detector antenna pattern func-
tions, ⌅ is the polarization angle, and (�, ⌃) are angles
describing the location of the source on the sky. The an-
gles are all assumed to be constant for a transient source
but time-dependent for sources that last long enough so
that the Doppler modulation of the signal due to the
relative motion of the source and detector cannot be ne-
glected. For a coalescing binary consisting of two stars
of masses m1 and m2 (total mass M ⇤ m1 + m2 and
symmetric mass ratio ⇤ ⇤ m1m2/M2) and located at a
distance DL, the GW amplitudes are given by

h+(t) = 2 ⇤ M5/3 D�1
L (1 + cos2(⇥)) ⇧(t� t0)2/3

⇥ cos[2�(t� t0; M, ⇤) + �⇤
0],

h⇥(t) = 4 ⇤ M5/3 D�1
L cos(⇥) ⇧(t� t0)2/3

⇥ sin[2�(t� t0; M, ⇤) + �⇤
0], (1.4)

where ⇥ is the angle of inclination of the binary’s orbital
angular momentum with the line-of-sight, ⇧(t) is the an-
gular velocity of the equivalent one-body system around

the binary’s centre-of-mass and �(t; M, ⇤) is the corre-
sponding orbital phase. Parameters t0 and �⇤

0 are con-
stants giving the epoch of merger and the orbital phase
of the binary at that epoch, respectively.

The above expressions for h+ and h⇥ are the dominant
terms in what is essentially a PN perturbative series. We
have written down the expressions for a system consisting
of non-spinning components on a quasi-circular orbit. In
reality, we cannot assume either to be true. Eccentric-
ity might be negligible only in the case of stellar mass
binaries expected to be observed by ground-based detec-
tors, but both eccentricity and spins could be non-zero in
the case of merger of supermassive black holes expected
to be observed by the Laser Interferometer Space An-
tenna (LISA) [3]. The argument below holds good to
whatever order the amplitudes are written down and for
non-spinning objects on an eccentric orbit.

Substituting the expressions given in Eq. (1.4) for h+

and h⇥ in Eq. (1.3), we get

h(t) =
⇤ M5/3

De�
⇧2/3 cos[2�(t� t0; M, ⇤) + �0],(1.5)

De� ⇤ DL
�
F 2

+(1 + cos2(⇥))2 + 4F 2
⇥ cos2(⇥)

⇥1/2
, (1.6)

�0 ⇤ �⇤
0 + arctan

⇤
� 2F⇥ cos(⇥)

F+(1 + cos2(⇥))

⌅
. (1.7)

Here De� is the e⇥ective distance to the binary, which
is a combination of the true luminosity distance and the
antenna pattern functions. Note that De� ⌅ DL. In the
case of non-spinning binaries on a quasi-circular orbit,
therefore, the signal is characterized by nine parameters
in all, (M, ⇤, t0,�0, �, ⌃, ⌅, ⇥, DL).

Since the phase �(t) of the signal is known to a high
order in PN theory, one employs matched filtering to ex-
tract the signal and in the process measures the two mass
parameters (M, ⇤) (parameters that completely deter-
mine the phase evolution) and the two fiducial parame-
ters (t0, �0). In general, the response of a single inter-
ferometer will not be su⌅cient to disentangle the lumi-
nosity distance from the angular parameters. However,
EM identification (i.e., electromagnetic, especially opti-

Sathyaprakash et al CQG (2010)

1000 GW-GRB sources 
known sky and inclination
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Post-Merger
• When 2 NSs merge after the inspiral they briefly form an 

unstable hyper-massive NS (if the EOS is not too soft). 
• Such an object will survive for O(10s) milliseconds before 

collapsing into a black-hole. 
• The GW waveform contains signatures of the EOS encoded in 

multiple frequency components. 

32

12

FIG. 8. Snapshots of the rest-mass density on the (x, y) plane for the binary ALF2-q10-M1325. From left to right, the panels refer to
five characteristic times: the initial time, the time of the merger, the time right after the merger (i.e., at t = 1.0ms), when the ` = m = 2
deformation in the HMNS starts to develop (i.e., at t = 3.0ms), and a later time (i.e., at t = 10.0ms). Note that only in the last panel the
bar-deformed HMNS is well defined and quasi-stationary.

time of the merger, the time right after the merger (i.e., at
t = 1.0ms), when the stellar core stop oscillating and an
` = m = 2 deformation in the HMNS starts to develop (i.e., at
t = 3.0ms), and then when the bar-deformed HMNS (cf., re-
gion in white) is well defined and with a quasi-stationary core
(i.e., at t = 10.0ms).

Following this phenomenology, it is possible to build a me-
chanical toy model, whose mathematical details are presented
in Appendix A, in which the object produced right after the
stellar contact is composed of an axisymmetric disk rotating
rapidly at a given angular frequency, say ⌦2, to which two
spheres are connected (e.g., via a shaft) but are also free to
oscillate via a spring that connects them (see Fig. 17 in Ap-
pendix A). In such a system, the two spheres will either ap-
proach each other, decreasing the moment of inertia of the
system, or move away from each other, increasing the moment
of inertia. Because the total angular momentum is essentially
conserved, the system’s angular frequency will vary between
a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
⌦3 (corresponding to the time when the two spheres are at the
smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1

2 (⌦1 + ⌦3), just as f2 ⇡

1
2 (f1 + f3) in the PSDs we

have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2

for t ! 1 (cf., Fig. 18). As a result, most of the power in
the PSD will appear around ⌦2, with two main side bands
at ⌦1 and ⌦3. Conversely, if dissipative processes are not
present, then the GW signal will have contributions at fre-
quencies ⌦2 and at its overtones ⌦

n

' (n/2)⌦2, such that
⌦2 '

1
2 (⌦1 + ⌦3). Overall, and as we will discuss in more

detail in Appendix A, this toy model can therefore account for
both the presence of the main peak f2 and for the two equally-
distant side bands at f1 and f3.

There is a simple way of testing whether these modes are
coming just from the immediate post-merger phase or are pro-
duced on longer timescales in terms of nonlinear couplings.
This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colours
show the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colours are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the timeseries. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2� 3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and which are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.

Another concrete indication that the toy model provides a
good description of the dynamics right after the merger is of-
fered by Fig. 10, whose top panel shows the full numerical-
relativity strain in the + polarization as computed for the bi-
nary H4-q10-M1300 for the first 3.3ms after the merger.
This is to be compared with the GW strain in the + polariza-
tion as computed from the mechanical model (see Appendix A
for details). The similarities are quite remarkable, especially
when considering the crudeness of the toy model and the fact
that the signal shown is the most complex one portion of

Takami et al arXiv:1412:3240 (2014)
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FIG. 6. Gravitational waveforms for all the binaries with equal masses and nuclear-physics EOSs as evolved at the reference medium resolution.
Each row refers to a given EOS, while each column concentrates on a given initial mass. The different EOSs are distinguished by different
colours and we will adopt this color-coding also for all the subsequent plots; more details on the various binaries shown in Table. II.

Also in the frequency domain, a rapid scan of the panels
allows one to discern the most important features. First, and
as discussed by several authors [8, 23–27, 65, 69], all PSDs
show a clear and strong peak, i.e., the f2 peak, which, at these
distances, can be one order of magnitude or more above the
sensitivity curve of the Advanced LIGO detectors. This peak
is clearly related to the rotation of the bar-deformed HMNS
and corresponds, in a corotating frame, to a (quadrupolar)
` = m = 2 mode moving at a positive pattern speed in the
prograde direction [28]4. As we will comment later on in Sec-
tion V E, this mode can be seen to correlate with a number
of properties of the stars comprising the binary, although this
dependence is different for different EOSs and is “universal”
only at a fixed mass.

All of the panels also show the presence of a low-frequency
peak, i.e., the f1 peak, which has already been discussed

4 As customary, the prograde direction is the direction of rotation of the
HMNS as seen in an inertial frame.

in detail in Ref. [28], where it was indicated as f�. This
peak has always a power smaller than in f2 and it can hap-
pen that if the EOS is particularly soft (e.g., as for the bi-
nary APR4-q10-M1275) or if the mass is particularly small
(e.g., as for the binary SLy-q10-M1250), it is hard to dis-
tinguish it from the background. However, because the peak
is also sitting in a region where the sensitivity of detectors
is higher, it will be detectable at these distances with a SNR
smaller but comparable to that of the f2 peak (cf., Table III).
As remarked in [30], this peak is is produced by the nonlinear
oscillations of the two stellar cores that collide and bounce re-
peatedly right after the merger. More importantly, as we will
comment later on in Section V D, this mode correlates tightly
with the stellar compactness C in a way that is essentially “uni-
versal”, that is independent of the EOS.

In addition to the f1 and f2 peaks, the PSDs also show the
presence of an additional peak at frequencies higher than f2

(see top left panel of Fig. 7). We have dubbed this peak as
f3 (in Ref. [28] it was instead indicated as f+) and its value
is approximated as f3 ⇠ 2f2 � f1 ⇠ 3f1 with a precision of
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about 10%. While equally interesting and potentially contain-
ing additional information on the merging system, this peak is
the one with the least power of the three and is usually located
a very high frequencies, always below the sensitivity curve of
Advanced LIGO. Hence, more sensitive detectors, such as ET,
will be needed to observe this spectral feature even at moder-
ate distances.

B. On the origin of the f
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and f

3

peaks

It has been so far unclear what is the actual physical ori-
gin of the two frequency peaks f1 and f3. It is possible to
attribute f1 to a nonlinear interaction between the quadrupole
and quasiradial modes [28]; similarly, it is possible f3 is an
overtone or the result of the nonlinear interaction of the f2

mode with other non-quasiradial modes [28]. These pertur-
bative suggestions are given substance by the fact that the f2

peak is, to first approximation, the average of the f1 and f3

frequencies and is well-known that if a perturbed system has
eigenfrequencies f

i

, the nonlinearity of the equations will also

produce modes at frequencies f
i

± f

j

(see § 28 of Ref. [75]).
On the other hand, the amplitudes of these nonlinear couplings
are usually found to be considerably smaller than the originat-
ing eigenfrequencies (see the discussion in [76]) and our PSDs
show instead that the amplitudes in the f1 � f3 peaks vary of
a factor of few and not of orders of magnitude.

On the other hand, a different interpretation is possible on
the origin of these modes. In this interpretation, which we
suggest here, they are simply produced by the GW emission
due to the nonlinear oscillations of the two stellar cores that
collide and bounce repeatedly. Animations of the few mil-
liseconds following the instant when the stars get in contact,
in fact, show that the HMNS attains a quasi-stationary con-
figuration with a marked bar-mode deformation only ⇠ 5ms
after the merger. On the other hand, the object produced af-
ter the contact is far more irregular and the two stellar cores
collide and bounce repeatedly as a result of the strong rotation
and very high densities. This is shown in Fig. 8 for the rep-
resentative binary ALF2-q10-M1325. The figure contains
four different panels reproducing the rest-mass density on the
(x, y) plane at five characteristic times: the initial time, the
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FIG. 9. Selected PSDs 2h̃(f)f1/2 relative to binaries with average mass M̄ = 1.30M�. The thin solid lines refer to the PSDs already shown in
Fig. 7, while the thick solid lines refer to a time interval excluding the first 3ms after the merger, i.e., t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms.
The vertical dashed lines indicate the position of the f

1

and f

2

frequencies and highlight that the power in the f

1

peak is built right after the
merger and essentially disappears if the first 3ms are excluded.

60

FIG. 10. Top panel: Full numerical-relativity strain in the + po-
larization computed for the binary GNH3-q10-M1300 for the first
3.3ms after the merger. Bottom panel: Strain in the + polarization as
computed from the mechanical toy model discussed in Appendix A.
The similarities are quite remarkable, especially when considering
that the signal shown is representative of the most complex part of
the full post-merger signal (cf., insets).

the full post-merger signal, which is far more regular once
the HMNS has reached a stationary state (cf., insets). The
ability of the toy model to describe the GW emission in the
merger phase depends on how well the two stellar cores can
be described as two isolated spheres oscillating quasi harmon-
ically. This is obviously a rather good approximation for stiff
EOSs, but the toy model can provide similarly good quali-
tative agreements essentially for all the waveforms shown in
Fig. 6. Hence, at least in principle, the toy model provides a
convenient tool to improve the description of the post-merger
signal proposed in Ref. [77], possibly opening the way to the
fully analytic construction of the post-merger signal for tem-

plate building.

C. Correlations of the f

max

frequency

In this Section and in the two following it, we will discuss
in more detail how to use some of the frequencies in the GW
signal discussed above to extract physical information on the
stars comprising the binary and hence on their EOS.

We will start by considering the frequency at peak ampli-
tude fmax that, in contrast with the f1 � f3 frequencies, is an
instantaneous frequency and not a feature of the PSDs. We
then recall that when restricting the analysis to BNSs having
stars with equal masses and set to be M̄ = 1.35M�, Read et
al. [31] have recently found that fmax can be effectively char-
acterized only in terms of the tidal deformability � through
a relation that is essentially independent of the EOS and was
found to be expressed by the relation

log10

✓
fmax

Hz

◆
= 3.69652 � 0.131743⇤1/5

, (22)

where the dimensionless tidal deformability ⇤ is defined as

⇤ ⌘

�

M̄
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=

2
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✓
R̄

M̄

◆5

, (23)

and k̄2 is the ` = 2 dimensionless tidal Love number [The em-
pirical relation (22) is shown as a dotted line in Fig. 11]. Al-
ready in Ref. [31] it was noted that this behaviour is reminis-
cent of the so-called universal “I-Love-Q” relations [78, 79]
that have been pointed out for isolated neutron stars and have
since been the subject of intense research [80–92]. A similar
behaviour has been found also within an effective-one-body
(EOB) description of the tidal effects in BNSs [32]. More
specifically, the EOB analytic approach has revealed quasi-
universal relations of the mass-rescaled GW frequency and of
the binding energy at the time of merger when expressed as
functions of ` = 2 dimensionless tidal coupling constant T

2 ,
which is related to tidal deformability by � = 16T

2 M̄
5
/3 in



Dependence on mass

• The frequency features 
correlate positively with 
mass. 

• This is expected since 
heavier NSs are smaller 
→ characteristic 
frequencies are higher.
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the finest grid is 0.15GM⊙c−2 ∼ 0.221 km. We extract the
GWs, consisting of a plus and cross polarization and sampled
in time at a rate of Δt ¼ 1.68GM⊙c−3 ∼ 8.27 × 10−3 ms,
equivalent to a sampling rate of ∼121 kHz, at a distance
R0 ¼ 500GM⊙c−2 ∼ 738 km. We analyze only the l ¼
m ¼ 2 mode of GWs, which is the dominant one. As the
initial data, we use quasiequilibrium irrotational BNSs
generated by the multidomain spectral-method code
LORENE [41] under the assumption of a conformally flat
spacetime metric. We consider five equal-mass binaries with
an initial coordinate separation of the stellar centers of 45 km
and polytropic EOS, p ¼ KρΓ with an adiabatic exponent
Γ ¼ 2 and polytropic constant K ¼ 123.6 (in units c ¼
G ¼ M⊙ ¼ 1); details of the different binaries are shown
in Table I. A very important requirement of our sample of
BNSs is that they are only very finely separated in total
gravitationalmass,with differences that are of the order of 2%
only. Producing such a sample at a fixed separation is far
from trivial and has represented a major numerical difficulty,
stretching the capabilities of the LORENE libraries. Once
evolved, the stars perform approximately 3.5 orbits before
merger.

III. FREQUENCY DOMAIN MODELING
OF THE HMNS

In order to perform the parameter estimation described in
Sec. IV, we must first be able to parametrize and model the
HMNS stage of the waveform. Using our five waveforms as
a basis, the current state-of-the-art numerical simulations of
BNS systems do not yet give us the insight and accuracy
required to model the phase evolution of the HMNS
waveform as a function of the system’s mass. This, coupled
with the assumption that there exists a smooth relationship
between the total gravitational mass of the system M and
the frequencies of prominent spectral features, forces us to
model the signal power rather than the complex waveform.
Therefore, in our HMNS analysis, we are insensitive to
information encoded in the phasing of the waveform.
Unless a semianalytic description of the phase evolution
in the HMNS stage is possible; the one adopted here is
probably the only approach feasible.
For each numerical waveform, we perform the following

procedure in order to compute noise-free power-spectrum
reference templates.
The time series for both the plus and the cross

polarizations are preprocessed using a fifth-order high-
pass Butterworth filter with knee frequency at 1 kHz.
A symmetric time-domain Tukey window with α parameter
0.25 (affecting the first and last 4 ms of the time series) is
then applied. This is done to suppress the leakage of power
from the last few cycles of the inspiral and initial merger
stage of the waveform and to cut off the waveform before
the system collapses to a black hole. The discrete Fourier
transform is then computed for each polarization from
which we construct the reference template

T ðfÞ≡ j ~hþðfÞj2 þ j ~h×ðfÞj2

ShðfÞ
≅
2j ~hþðfÞj2

ShðfÞ
; ð1Þ

where ShðfÞ is the noise spectral density of the detector,
which we choose to be that of the ET-B [42] design [43].
Note that since we are taking the signal power, and the
preprocessing steps suppress frequency-domain artifacts
from the finite duration signals, the plus and cross power
contributions are approximately equal. We make no
assumptions regarding the polarization or source-detector
orientation of a potential signal in this construction. For the
ET colocated detectors, arbitrary values of these parameters
serve only to scale the overall amplitude of the waveform.
Visual inspection of these reference templates as a

function of frequency, shown in Fig. 2, allows us to clearly
identify the two primary spectral features of interest. The
first feature, at frequencies ≈1.2–1.6 kHz, is approximately
Gaussian in profile and moves to higher frequencies for
higher mass systems. In contrast, the second feature, at
frequencies ≈1.7–3 kHz, appears to be best described by a
sloping trapezoid with rounded shoulders and a central
frequency and bandwidth that also grows with increasing
system mass. In addition, there appears to be a third power
component at low frequencies, i.e., ≤ 2 kHz, that becomes
more dominant as the system mass increases. A reasonable
approximation to this third feature is a second Gaussian of
lower amplitude and greater variance than that used to
model the first feature. For the purposes of this work, this
third feature is included only to improve the quality of our
model fitting. Mathematically, our entire ad hoc model of
the waveform power spectrum can be expressed as
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FIG. 2. The normalized power-spectrum reference templates
[Eq. (1)] for each of the five system masses as a function of
frequency (black lines). Also plotted are the best-fit model
templates defined in Eq. (2) (red dashed lines).
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The idea

• First detect the inspiral 
and accurately measure 
the redshifted mass. 

• Then analyse the post-
merger signal and 
measure the redshifted 
frequency feature(s). 

• Their different 
dependence on redshift 
allows us to break the 
degeneracy.
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gravitational mass, as a function of their true simulated
values. These uncertainty estimates are obtained by mar-
ginalizing the joint distribution pðz;MjM0

z; fPgÞ over the
total mass to obtain pðzjMz; fPgÞ and over the redshift to
get pðMjMz; fPgÞ. From these marginalized distributions,
we compute our representative uncertainties as half of
the minimum interval to contain 68% of the total proba-
bility (analogous to the 1σ uncertainty for a Gaussian
distribution).
We observe in Table IV that the general trend in the

accuracy of redshift estimation is relatively insensitive
to total system mass, but as we would expect, we see a
deterioration in accuracy for more distant sources. The
same can be seen in Table V for the estimation of the
total gravitational mass. A notable feature of our results
is that the redshift and mass accuracies are clearly

dominated by the measurement of the second feature at
low masses and by the first feature at higher masses.
One might expect the more localized first feature to
always dominate. However, the ability to infer a mass
from a redshifted frequency measurement using the
relationship between the gravitational mass and the
spectral feature frequency [Eq. (6)] is sensitive to
the gradient of that relation in addition to the SNR
of each feature. For lower masses, it is clear from Fig. 3
that mass measurements inferred from uncertain fre-
quency measurements will have correspondingly larger
uncertainties when the gradient of fjðMÞ is lower.
This is the case for the first spectral feature at lower
masses and the reason why this analysis requires
numerical waveform simulations with such closely
spaced mass values.

FIG. 4. The joint posterior distributions on the redshift and total gravitational mass of the BNS system for single representative
realizations of noise and system parameters. Each row of plots represents a simulated signal of one of the five system masses (see
Table I) ranging from low (bottom row) to high (top row) mass. Columns represent different simulated redshifts ranging from 0.01
(left) to 0.04 (right) in steps of 0.01. The green, blue, and red contours represent the posterior contributions from the inspiral
measurement, the first HMNS spectral feature, and the second HMNS spectral feature, respectively. The black contours represent the
final posterior distribution combining all measurements, and the black dots indicate the true simulated redshift and total mass values.
In all cases, the contours enclose 68% of the probability. Overlapping regions have been filled according to the additive color system
with the exception that regions outside all contours and the full interior of the final posterior contour have been left blank for clarity.
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Redshift measurements

• Nice but despite the 
huge SNR in the inspiral, 
the post-merger has low 
SNR. 

• Hence currently only 
applicable to nearby 
sources (Adv detector 
distances). 

• However, still 
independent of EM 
observations.
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get pðMjMz; fPgÞ. From these marginalized distributions,
we compute our representative uncertainties as half of
the minimum interval to contain 68% of the total proba-
bility (analogous to the 1σ uncertainty for a Gaussian
distribution).
We observe in Table IV that the general trend in the

accuracy of redshift estimation is relatively insensitive
to total system mass, but as we would expect, we see a
deterioration in accuracy for more distant sources. The
same can be seen in Table V for the estimation of the
total gravitational mass. A notable feature of our results
is that the redshift and mass accuracies are clearly

dominated by the measurement of the second feature at
low masses and by the first feature at higher masses.
One might expect the more localized first feature to
always dominate. However, the ability to infer a mass
from a redshifted frequency measurement using the
relationship between the gravitational mass and the
spectral feature frequency [Eq. (6)] is sensitive to
the gradient of that relation in addition to the SNR
of each feature. For lower masses, it is clear from Fig. 3
that mass measurements inferred from uncertain fre-
quency measurements will have correspondingly larger
uncertainties when the gradient of fjðMÞ is lower.
This is the case for the first spectral feature at lower
masses and the reason why this analysis requires
numerical waveform simulations with such closely
spaced mass values.

FIG. 4. The joint posterior distributions on the redshift and total gravitational mass of the BNS system for single representative
realizations of noise and system parameters. Each row of plots represents a simulated signal of one of the five system masses (see
Table I) ranging from low (bottom row) to high (top row) mass. Columns represent different simulated redshifts ranging from 0.01
(left) to 0.04 (right) in steps of 0.01. The green, blue, and red contours represent the posterior contributions from the inspiral
measurement, the first HMNS spectral feature, and the second HMNS spectral feature, respectively. The black contours represent the
final posterior distribution combining all measurements, and the black dots indicate the true simulated redshift and total mass values.
In all cases, the contours enclose 68% of the probability. Overlapping regions have been filled according to the additive color system
with the exception that regions outside all contours and the full interior of the final posterior contour have been left blank for clarity.
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Summary

• GW sources are (will be) very useful cosmological probes. 
• They will provide measurements independent of the “cosmic 

distance ladder”. 
• We have a number of different methods with and without EM 

counterparts. 
• Calibration may end up being a limiting systematic factor. 
• We need to compare our potential sensitivities to future EM 

experiments. 
• Focus right now is on first direct detection.
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Super-Massive binary black-holes

• DL,z relation investigated for 
LISA by Holz & Hughes 
2005. [Holz & Hughes 2005 ApJ] 

• Statistical approach taken by 
Petiteau et al 2011. [Petiteau et al 
2011 ApJ] 

• Good localisation makes host 
identification tractable. 

• Weak gravitational lensing is 
a limiting factor in estimating 
luminosity distance.
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the merged remnant several years after the merger, leading to an
afterglow that should be measurable by next-generation X-ray
telescopes.

Other models suggest that there may be an electromagnetic
precursor to the merger rather than a delayed glow. One ex-
ample is discussed by Armitage & Natarajan (2002). They ar-
gue that gas is driven onto the larger member of the binary by
the secondary’s in-spiral, leading to super-Eddington accretion.
In this model, much of the inner disk may be expelled from the
system in a high-velocity (!104 km s"1) outflow. Such strong
outflows could flag a recent or impending merger. A similar fam-
ily of models (Sillanpää et al. 1988; Lehto & Valtonen 1996)
explains periodic variations in the BL Lac object OJ 287 by a
tight, eccentric binary system with mass ratio of about 1:100.
Flaring outbursts from this quasar are explained as arising from
the secondary periodic crossing of the primary’s accretion disk.
Given the great payoff that would follow from associating a
counterpart to a GWevent, we strongly advocate continuing to
develop and refine models of BBH mergers.

It is worth noting that, for a small fraction of binaries (as-
suming a sufficiently high event rate), LISAwill provide an error
box of P50 and an estimate of the time of merger about a day
in advance. Regardless of the state of theoretical predictions,
we imagine that in such cases there will be great interest in
searching the GW source error box for any observational coun-
terparts to the merger. Indeed, as we briefly discuss in x 5, the
number of relevant galaxies in the LISA error box may be fairly
small, so associating an EM counterpart with the GWevent may
be tractable.

4. GRAVITATIONAL LENSING

Having discussed the impressive quality of GW standard
sirens, we turn now to an important caveat: the impact of grav-
itational lensing on the distance measurement. GWs are lensed
exactly as EM radiation is lensed. Since we expect BBH events
to come from rather large redshift (zk 1), weak lensing in the
GW data sets should be common (Marković 1993; Wang et al.
1996; in addition to the occasional strongly lensed source).

A lens with magnification ! will distort the inferred lu-
minosity distance to the source; if the true distance is DL , we
measure DL /

ffiffiffi
!

p
, incurring a ‘‘systematic’’ error!DL /DL ¼ 1"

1/
ffiffiffi
!

p
. We estimate the error such lensing is likely to introduce

by convolving this quantity with the expected magnification

distribution, p(!) (Holz & Wald 1998; Wang et al. 2002); an
example of this distribution is shown in Figure 7. Using pa-
rameters appropriate to a "CDM model of the universe, we
find a mean error at z ¼ 2 of h!DL /DLi ’ 0:005, with a standard
deviation h(!DL /DL)

2i1=2 ’ 0:05. The dashed line in Figure 6
shows the contour we expect from the two GW sources when
lensing errors are included. The parameter accuracies are sig-
nificantly degraded.
Of course, this magnification bias affects all standard can-

dles, not just GWs. The rate of Type Ia SNe, however, is high
enough to sufficiently sample the entire lensing distribution and
thus average away the bias. Missions such as SNAP are de-
signed to observe thousands of SNe at high redshift, in large
part to overcome gravitational lensing. Indeed, this may allow
one to measure the lensing signal well enough to infer char-
acteristics of the lensing matter (Metcalf & Silk 1999; Seljak &
Holz 1999). This is unlikely to be the case with BBH GWs; the
rate of mergers will likely be much lower than that of SNe
(Richstone 1998; Haehnelt 1998), so we cannot count on enor-
mous numbers of events. We also emphasize that we do not ex-
pect to be able to correct for gravitational lensing effects on
a case-by-case basis (Dalal et al. 2003). Lensing, therefore, will
introduce an insurmountable error of !5%–10% for each in-
dividual high-redshift event, significantly greater than the in-
trinsic distance error.

5. IDENTIFYING THE COUNTERPART

In order to provide data on the distance-redshift curve,
a GW event must be associated with an ‘‘electromagnetic’’
counterpart—GWs provide an accurate measure of luminosity
distance but give no direct information about redshift. This is
the weakest link in our analysis; we do not know whether such
counterparts exist. However, a simple counting argument sug-
gests that the number of relevant galaxies in the LISA error cube
may be fairly small. We approximate the redshift distribution of
source galaxies by

dN

dR d#
/ R" exp " R=R$ð Þ#

h i
; ð6Þ

where R is the comoving distance; we take " ¼ 1, # ¼ 4, and
R$ ¼ c/H0 (Kaiser 1992; Hu 1999). We normalize this to a pro-
jected number density of

dN

d#
¼

Z
dR

dN

dR d#
’ 300 galaxies arcmin"2; ð7Þ

approximating the Hubble Deep Field (Williams et al. 1996).

Fig. 6.—Likelihood contours for measurement of the matter density #m and
dark energy equation-of-state parameter w (with the pressure and density of the
dark energy related by p ¼ w$). We assume that the universe is flat, and that the
underlying model has #m ¼ 0:3 and w ¼ "1. The two GW sources are at z ¼ 1
and 3, while the SNAP SNe are evenly distributed within 0:7 < z < 1:7. [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 7.—Differential probability of magnification by gravitational lensing,
p(!), for sources at z ¼ 1:5 in a concordance universe (seeWang et al. [2002] for
details).
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Expansion acceleration
• Directly measuring the expansion of the universe during a 

GW event [Seto et al 2001 PRL]. 
• Observe for long enough to see an object’s changing redshift.

42

dependent phase arising from the orbital evolution, and at
the order of the restricted 1.5 post-Newtonian (PN) ap-
proximation, it is given by [19,20]

!ðfÞ ¼ 2!ftc $"c $
!

4
þ 3

128
ð!MzfÞ$5=3

&
!
1þ 20

9

"
743

336
þ 11

4
#
#
#$2=5ð!MzfÞ2=3

$ 16!#$3=5ð!MzfÞ
$
; (13)

where tc and "c are the time and phase at coalescence,
respectively. The first term in the bracket in Eq. (13)
corresponds to Newtonian-order dynamics and the other
remaining terms represent the post-Newtonian-order cor-
rections in powers of v' ð!MzfÞ1=3. In principle, there
additionally appears a phase correction due to cosmic
expansion, and the Hubble parameter HðzÞ can be also
measured from this term [1,22]. Although the inclusion
of the phase correction slightly changes the size of the
errors in binary parameters, it does not seriously affect
the estimation of the luminosity distance dL. In addition,
the sensitivity of the phase correction to the Hubble pa-
rameter is rather small. Thus, we may safely ignore the
phase correction due to cosmic expansion in the subse-
quent analysis.

In Eqs. (12) and (13), there are five unknown parameters
to be determined observationally, i.e., Mz, #, tc, "c, and
dL. Except for the luminosity distance, the four parameters
merely carry the information on the individual property of
the binary system. For simplicity, we consider the equal-
mass NS binaries with 1:4M(, which lead to Mz ¼
1:22ð1þ zÞM( and # ¼ 1=4, and set the other parameters
to tc ¼ 0 and "c ¼ 0.

Since the GW observation can only determine the red-
shifted chirp massMz, the redshift of each binary has to be
measured from an electromagnetic counterpart. According
to Cutler and Holz [4], the angular resolution of BBO is
'1–100 arcsec2, with which we can identify the host gal-
axy of the binary. We thus suppose that the redshift of any
binary system is obtained from the electromagnetic obser-
vations. Note that the Doppler effect by the local motion
also affects the redshifted chirp mass, and the dipole an-
isotropy might be measured through the spatial distribution
of the observed chirpmass if the intrinsic scatter in themass
distribution of NS binaries is very small. The feasibility to
measure the dipole anisotropy from the chirpmass might be
interesting, but we need a more detailed study on the
formation history of NS binaries, and we here simply
ignore this effect in the parameter estimation.

The fundamental basis to estimate the distance error for
a single binary is the Fisher matrix formalism. The Fisher
matrix for a single binary is given by [19,23]

"ab ¼ 4
X8

i¼1

Re
Z fmax

fmin

@a ~h
)
ðiÞðfÞ@b ~hðiÞðfÞ

PðfÞ df; (14)

where @a denotes a derivative with respect to a parameter
$a; Mz, #, tc, "c, and dL. The quantity ~hðiÞ represents the
GW signal obtained from the i-th interferometer. Since two
independent signals are obtained for each cluster [24],
DECIGO has the eight interferometric signals in total,
each of which is supposed to have an identical detector
response and noise power spectrum PðfÞ. The analytical fit
of noise spectrum [25] is given by

PðfÞ ¼ 4:21& 10$50

"
f

1Hz

#$4
þ 1:25& 10$47

þ 3:92& 10$49

"
f

1Hz

#
2
Hz$1:

In Fig. 2, the noise spectrum of DECIGO is shown,
together with the evolutionary tracks of the NS binary
located at three different redshifts, z ¼ 0:1, 1, and 5. In
each track, the symbols indicate the frequency at the 10, 3,
and 1 yr before the time of binary coalescence (from left to
right). In this respect, the lower cutoff of the frequency fmin

should be incorporated into the integration in Eq. (14), and
is given by the function of observation time Tobs as well as
the redshift and mass:

fmin ¼ 0:233
"
1M(
Mz

#
5=8

"
1 yr

Tobs

#
3=8

Hz: (15)

Note that the coalescence frequency of the NS binary is
typically'kHz, and thus the upper cutoff of the frequency
naturally arises from the noise curve. For the computa-
tional purpose, we set fmax ¼ 100 Hz.
Given the numerically evaluated Fisher matrix, the

marginalized 1-sigma error of a parameter, #$a, is esti-
mated from the inverse Fisher matrix

FIG. 2 (color online). Sky-averaged DECIGO noise curve.
(Arm angle 60* is taken into account.) Diagonal lines represent
frequency evolutions of an NS-NS binary at z ¼ 5 (solid red
line), z ¼ 1 (dotted green line), and z ¼ 0:1 (dashed blue line).
Diamonds on the lines from the right to the left denote the
frequency of the binary 1 yr, 3 yr, and 10 yr before the merger.
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Fig. 1. Left panel: Fractional error of the redshift as a function of the true redshift for the
Einstein Telescope (circles), and the corresponding sky location and orientation-averaged Fisher
matrix results1 (dashed line). The fractional error varies between 10-100 percent. Right panel:
Distribution of fractional bias, (zmed − ztrue)/(∆z), where zmed is the median redshift and ztrue
is the true redshift. No systematic bias is found.

3. Results & Discussion

The left panel of Fig. 1 shows the fractional error of the redshift, ∆z/z (where
∆z denotes the 68% confidence interval), for 197 sources with a network SNR (ET
comprises of three co-located detectors) greater than 8. These results are compared
to the Fisher matrix calculations similar to those in Ref. 1 but with the ET-B
PSD. In line with the Fisher Matrix calculations, the redshift can be found with an
accuracy of O(10−1), and the accuracy decreases as the redshift increases.

The right panel of Fig. 1 shows the distribution of the fractional bias, (zmed −
ztrue)/(∆z), where zmed is the median redshift and ztrue is the true redshift, for the
same set of sources as the left panel. No systematic bias is found.

The results shown in Fig. 1 suggest that it is indeed possible to measure the
redshift by supplementing the point-particle description of the phase with correc-
tions due to the NS tidal deformability. Whether the accuracies shown in Fig. 1
are sufficient to perform competitive cosmological inference will be the subject of
forthcoming publications.
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NS tidal effects

• CM & Read discovered that 
tidal effects in NS binaries 
break the M,z degeneracy.
[Messenger & Read 2012 PRL, Li et al 
2013] 

• The additional phase 
contribution is a function of 
the intrinsic mass! 

• So you get the redshift 
without an EM observation.
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FIG. 2. Tidal distortion contribution to the quadrupole GW phase
�⇥ for the three representative EOSs. The tracks end at fend and
yield larger dephasings for stiffer EOSs, such as PS.

tative of a much larger sample of EOSs. Note that all of these
EOSs have a maximum mass 1.93 . Mmax/M� . 2.66.

Figure 1 illustrates the role played by fend. We consider
the PS EOS and non-spinning BHs and show the tracks of in-
spiralling BH-NS binaries at 100Mpc (red solid lines), along
with the sensitivity curves of AdLIGO (black line) and Ad-
Virgo (light-blue line). The signal amplitudes are averaged
over sky location and relative inclination of the binary. We
show explicitly only the strongest and weakest signal, which
refer to MNS = 1.9M�, q = 0.1 and to MNS = 1.2M�, q =
1/3, respectively. The tracks terminate at (fend, h̃(fend)

p
fend)

and their continuations as red dashed lines serve only as a ref-
erence. The shaded region, which is magnified in the right
panel, is the one spanned by the termination point for all com-
binations of MNS/M� 2 [1.2, 1.9] and q 2 [0.1, 1/3].
Dephasing and Overlaps. Once a binary with parameters
(q, a,MNS,⇥) is selected, we compute �⌅(fend). Overall, we
find that �⌅: (i) is greater for bigger ⇥’s, i.e. for more de-
formable NSs (see Fig. 2); (ii) grows with q, i.e. for com-
parable masses; (iii) decreases as MNS [cf. Eq. (21) in [6]];
(iv) depends only weakly on the BH spin, since the only
spin dependence may come through fend, but binaries with
fend = ftide < fISCO are hardly affected, since ftide is not very
sensitive to a, while binaries with fend = fISCO < ftide are
those with high MNS and low ⇥, so that the gain or loss in
fISCO does not modify �⌅ significantly.

To determine whether the dephasings found may affect the
detection of BH-NS inspiral events, we compute, for each
binary, the overlap between the point-particle model of the
GW inspiral signal (hPP) and the one which includes tidal
deformability effects (h�); this is the normalized inner prod-
uct of the two signals, maximised over time and phase shifts,
i.e. O[hPP , h� ] ⌘ max{t0,�0}

hh
PP

|h
�
ip

hh
PP

|h
PP

ihh
�
|h

�
i

, where the

inner product is hhPP |h�i ⌘ 4< R fend

fstart
df

h̃
PP

(f)h̃⇤
�
(f)

Sh(f)
, Sh(f)

being the noise power spectral density of a chosen detector.
Note that we are implicitly assuming that the waveforms in-
cluding tidal effects are the “real” signals and treating the
point-particle waveforms as the templates used to detect them.

Our results for the three EOSs considered and a BH with
a = 0 are shown in Fig. 3 for AdLIGO. Note that for any EOS
choice and for any combination of the BH and NS masses, the
overlap is always greater than 0.997, which corresponds to a
1% loss of signals; this is true even for spins up to a = 1.

FIG. 3. Overlaps between PN waveforms for BH-NS binary systems
modelled as point-particles (“PP”) and with the inclusion of tidal dis-
tortion effects (“�”). The overlap is calculated for the AdLIGO de-
tector and for non-spinning BHs.

The smallest overlap is given by the PS EOS combined with
MNS = 1.2M�, q = 1/3, and a = 1 (inclusion of spin
changes overlaps by < 10�3). Hence, even if all binaries were
to have these extreme properties, the loss of signals would be
less than 1%. All in all, BH-BH inspiral templates will allow
second-generation interferometers to detect inspiralling BH-
NS binaries with less than a 1% loss of signals. Similar re-
sults hold for the third-generation detector Einstein Telescope
(ET) [26], with a minimum possible overlap of about 0.995.
Measurability. Determining that the fraction of lost signals
is below 1% does not address the question of whether the
detected signals may be used to learn about the EOS. To
address this point, we consider a nominal detector-binary
distance of 100Mpc and calculate the distinguishability as
�hPP,� ⌘ hhPP �h�|hPP �h�i & 2(1�O[hPP, h�])⇤2, where
⇤2 = hhPP|hPPi ' hh�|h�i is the signal-to-noise-ratio (SNR)
and we neglected the term hhPP|hPPi�hh�|h�i ⇠10�4. Since
we treat hPP as the “template” and h� as the “signal”, a neces-
sary (but not sufficient) condition to distinguish between the
two is that �hPP,� > 1 [27]. Clearly, the greater �hPP,�, the
higher the chances of measuring the tidal effects.

In Fig. 4, we consider AdLIGO and report �hPP,� for bi-
naries with a = 0. In calculating the distinguishability, we
average the signal amplitudes both over sky location and over
relative inclination of the binary. Note the existence of a re-
gion where �hPP,� < 1 for all EOSs (white area) in the space
of parameters (q,MNS); this indicates that the inspiral of BH-
NS binaries falling in this region will not be distinguishable
from a BH-BH inspiral. For larger mass ratios and smaller NS
masses, �hPP,� increases, becoming equal to 1 first for the PS
EOS (red-shaded area) and then for the less stiff GNH3 EOS
(blue-shaded area). The maximum value of �hPP,� is ⇠ 10
(⇠ 5) for the PS (GNH3) EOS. Note that the black star pin-
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