

Hearing what gravitational wave standard sirens have to say

CaJAGWR - 24th March 2015

Chris Messenger - Kelvin Fellow - University of Glasgow

Talk outline

- Motivation
- Current state of knowledge
- The main ideas in GW cosmology
 - GW "standard sirens"
 - Statistical arguments
 - Space-based approaches
- Some recent ideas regarding neutron stars
 - Using tidal signatures
 - Using the hyper-massive NS
- Summary

Motivation

Gravitational waves

- Gravitational waves are propagating oscillations of the gravitational field.
- Travelling at the speed of light.
- Composed of 2 polarisations.

 Generated by time varying mass quadrupole (and higher) moment(s).

Detection rates

LIGO-Virgo Collaboration, arXiv:1304.0670 (2013)

	Estimated			Number	% BNS	Localized	
	Run	BNS Range (Mpc)		of BNS	within		
Epoch	Duration	LIGO	Virgo	Detections	$5{ m deg}^2$	$20\mathrm{deg}^2$	
2015	3 months	40 - 80	—	0.0004 - 3	—	_	
2016 - 17	6 months	80 - 120	20 - 60	0.006 - 20	2	5 - 12	
2017 - 18	9 months	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12	
2019 +	(per year)	200	65 - 130	0.2 - 200	3-8	8-28	dataatian
2022 + (India)	(per year)	200	130	0.4 - 400	17	48	detection
Table 5. Detection rates for compact binary coalescence sources.							ruled out in
IFO	Source ^a	$\dot{N}_{\rm low} { m yr}^{-1}$	$\dot{N}_{ m re}~{ m yr}^{-1}$	$\dot{N}_{ m high}~{ m yr}^{-1}$	$\dot{N}_{ m max}$ y	r^{-1}	2015
	NS–NS	2×10^{-4}	0.02	0.2	0.6		
	NS–BH	7×10^{-5}	0.004	0.1			
Initial	BH–BH	2×10^{-4}	0.007	0.5			
	IMRI into IMBH			<0.001 ^b	0.01 ^c		older paper with slightly different assumptions
	IMBH-IMBH			$10^{-4 d}$	10^{-3e}		
Advanced	NS–NS	0.4	40	400	1000		
	NS–BH	0.2	10	300			
	BH–BH	0.4	20	1000			
	IMRI into IMBH			10 ^b	300 ^c		
	IMBH-IMBH			0.1 ^d	1 ^e		

LIGO-Virgo Collaboration, CQG 27, 173001 (2010)

Motivation

- GW detection *alone* will be *pretty* good, *but...*
- The detection and characterisation of a *population* of GW sources will allow
 - the study of the large-scale structure of the Universe.
 - us to infer the formation history of the massive black hole population.
 - precision mapping of the expansion history of the Universe.
 - the use of cosmic distance markers (standard sirens).
 - provide a "powerful" probe of the dark energy content of the universe.

The current state of knowledge

Cosmic distance ladder

Copyright : Addison Wesley

- Nearby objects are used to calibrate more distant measurements.
- GW measurements would be **independent** of this ladder.

Hubble diagram

• Redshift
$$1+z = \sqrt{\frac{1+v/c}{1-v/c}}$$

• Luminosity distance

$$D_{\rm L} = c(1+z) \int_{0}^{z} \frac{dz'}{H(z')}$$

• Hubble parameter

Standard Candles

- Type 1a supernovae progenitors are thought to be white dwarfs pushed over the Chandrasekhar limit.
- They act as standard candles" of *equal* luminosity (to ~15%).
- Calibration with Cepheids gives $H_0 =$ 73.8 ± 2.4 km s⁻¹ Mpc⁻¹ [Riess *et al*, ApJ (2011)]

Current knowledge

- The recently published Planck CMB results (combined with others) give the best constraints to date.
- Consistent with the standard ΛCDM model.
- Gives $H_0 = 67.8 \pm 0.9$ km s⁻¹Mpc⁻¹
- These (EM) results are likely to improve before GWs are competitive.

GW standard sirens

Standard Candles

- The inverse square law relates the received flux to the distance
- All you need to know is that there are events/objects of equal intrinsic luminosity e.g. Type 1a Supernova

Gives relative distances so still need calibration

GW standard sirens

- The inverse square law relates the received GW amplitude to the distance
- GW compact-binary-coalescences of neutron stars or black holes (of given mass) will produce identical signals.

Gives absolute distances so no *calibration* required

Schutz's idea

- Schutz in 86' proposed using compact-binary-coalescences as "standard sirens" [Schutz, Nature (1986)].
- Phase measurement gives redshifted chirp-mass $\mathcal{M}_z = \mathcal{M}(1+z)$

- Amplitude gives ratio of redshifted chirp-mass^{5/3} with luminosity distance D_L.
- "Self-Calibrating" sources but **no redshift**.

\mathcal{M}, \mathcal{Z} degeneracy

The problem is that we only get D_L and the redshifted mass

 $\mathcal{M}_z = \mathcal{M}(1+z)$

- We need EM measurements of redshift to break the degeneracy.
- Therefore we need host galaxy identification.

Gamma-ray bursts

 GRBs represent an EM counterpart with redshift obtained from the host galaxy. [Dalal et al PRD (2006), Nissanke et al ApJ (2010), Zhao et al PRD (2011)]

Schutz's method

Galaxy catalogues

- Del Pozzo extended the Schutz idea to make use of galaxy catalogues to identify hosts [Del Pozzo PRD (2012)].
- The redshift can then be obtained.
- Any confusion on between host galaxies is averaged out with many sources.

Statistical arguments

Statistical properties

 Idea first proposed by Marković 93' and Finn & Chernoff 93' to use the distribution of measured SNRs. [Markovic PRD (1993), Finn & Chernoff ApJ (1993), Finn PRD (1996)]

Statistical properties

- The idea was expanded upon by Taylor *et al* 2011[Taylor *et al* PRD (2011), Taylor *et al* PRD (2012)]
- Where the mass distribution and star formation rate are included in the model.

Taylor et al PRD (2012)

Using tidal signatures

Neutron star Equation of State

- The equation of state (EOS) specifies the pressure of neutron star matter at a given density.
- Expect a single equation of state to describe all (cold) neutron stars
- It's not crazy to think that the Neutron-star EOS will be well-understood in the era of third-generation GW detectors [Del Pozzo et al PRL (2013)].

Tidal deformation

- Each neutron star's tidal field deforms the other star.
- The EOS sets how a neutron star of given mass responds.
- Tidal deformation modifies orbital energy and GW luminosity, contributing to the GW phase evolution:

$$\Phi(f)_{\text{tidal}} = \frac{3}{128\eta} (\pi M f)^{5/3} \left(-\frac{24}{M^5} \left(\frac{M+11m_1}{m_2} \lambda_1 + \frac{M+11m_2}{m_1} \lambda_2 \right) + \dots \right)$$

Tidal deformation

- Each EOS will provide a different level of deformation.
- Hence a different level of GW phasing.
- Also a different dependence on NS mass
- Tidal deformability is a function of the Love number k₂

$$\lambda(m) = (2/3)k_2R^5(m)$$

EOS effect on waveforms

• The presence of matter modifies the late-inspiral, merger, and post-merger GW signals: the high-frequency part of the coalescence.

Breaking M-z degeneracy

- Rest-frame waveform phase evolution with tidal contributions: (leading order, equal mass system)
- Tidal terms are formally 5 and 6PN order

$$\Phi(f) = \Phi_{\rm PN} - \frac{117}{8\eta} (\pi M (1+z)f)^{5/3} \frac{\lambda_1({\rm EOS};m)}{M^5}$$

These mass-dependent terms are not paired with a redshift factor

 Inference on the detected waveform allows us to estimate M and z.

Redshift measurement

- For 3rd generation detectors the GW signal alone can be used to determine the redshift of the source.
- Even in the worst case, redshift uncertainties can be constrained to ~40% at z < 1 and in the best case ~8%.

Cosmological implications

Using the hyper-massive NS

Post-Merger

- When 2 NSs merge after the inspiral they **briefly** form an unstable hyper-massive NS (if the EOS is not too soft).
- Such an object will survive for O(10s) milliseconds before collapsing into a black-hole.
- The GW waveform contains signatures of the EOS encoded in multiple frequency components.

Takami et al arXiv:1412:3240 (2014)

Post-Merger waveforms

Takami et al arXiv:1412:3240 (2014)

Post-Merger waveforms

Dependence on mass

- The frequency features correlate positively with mass.
- This is expected since heavier NSs are smaller
 → characteristic frequencies are higher.

$$R \propto M^{-1/3}$$

This work uses 5 waveforms from the same polytropic EOS

The idea

- First detect the inspiral and accurately measure the redshifted mass.
- Then analyse the postmerger signal and measure the redshifted frequency feature(s).
- Their different dependence on redshift allows us to break the degeneracy.

Messenger et al PRX (2014)

Redshift measurements

- Nice but despite the huge SNR in the inspiral, the post-merger has low SNR.
- Hence currently only applicable to nearby sources (Adv detector distances).
- However, still independent of EM observations.

Summary

- GW sources are (will be) very useful cosmological probes.
- They will provide measurements **independent** of the "cosmic distance ladder".
- We have a number of different methods with and without EM counterparts.
- Calibration may end up being a limiting systematic factor.
- We need to compare our potential sensitivities to future EM experiments.
- Focus **right now** is on first direct detection.

Thanks

Extra slides

Super-Massive binary black-holes

- *D*_L, *z* relation investigated for LISA by Holz & Hughes
 2005. [Holz & Hughes 2005 ApJ]
- Statistical approach taken by Petiteau *et al* 2011. [Petiteau *et al* 2011 ApJ]
- Good localisation makes host identification tractable.
- Weak gravitational lensing is a limiting factor in estimating luminosity distance.

Expansion acceleration

- Directly measuring the expansion of the universe during a GW event [Seto et al 2001 PRL].
- Observe for long enough to see an object's changing redshift.

NS tidal effects

- CM & Read discovered that tidal effects in NS binaries break the M,z degeneracy.
 [Messenger & Read 2012 PRL, Li et al 2013]
- The additional phase contribution is a function of the intrinsic mass!
- So you get the redshift without an EM observation.

