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Second generation gravitational-wave detectors
• Will reach design sensitivity around end of decade	


• Sensitive to gravitational-waves between ~10 Hz and a few kHz
LIGO Hanford	


~2019

LIGO Livingston	

~2019

Virgo	

~2021

LIGO-India	

~2022

KAGRA	




Stages of BNS coalescence

• Advanced LIGO sensitive to last few minutes of inspiral	


• ~104 gravitational-wave cycles

NS NS



Stages of BNS coalescence

• Early inspiral: Evolution depends on chirp mass  
and symmetric mass ratio ⌘ =

m1m2

(m1 +m2)2

M =
(m1m2)3/5

(m1 +m2)1/5



Stages of BNS coalescence

• Late inspiral: EOS-dependent tidal interactions lead to phase shift of 
~1 radian up to 400Hz

~3000 GW cycles later at 400Hz



Stages of BNS coalescence

• Last 20-30 cycles:  Tidal interactions lead to phase shift of ~1 GW cycle

400Hz up to merger



Stages of BNS coalescence

• Post-merger:  Frequencies are a few kHz and depend sensitively on EOS

 Hotokezaka et al., arXiv:1307.5888

NR simulation with SACRA code
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(Credit: Jocelyn Read, arXiv:1306.4065)

Stages of BNS coalescence



Tidal interactions during inspiral
• Tidal field       of each star induces quadrupole moment      

in other star	


• Amount of deformation depends on the stiffness of the EOS 
via the tidal deformability	


!

!

• Interaction increases binding energy	


• Additional quadrupole moments increase gravitational 
radiation 

NS NS
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• Post-Newtonian approximation expands solution to Einstein equations in 
powers of speed of bodies and compactness of the system:	


!

• Energy and gravitational-wave luminosity expansions:  
 

!

• Orbital evolution found with energy balance:  
 
 
 

• Waveform is then:  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• Tidal parameters encoded in phase evolution of waveform

Tidal interactions during inspiral
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EOS fit
• One-to-one relation between EOS and radius-mass curves	


• As well as between EOS and tidal deformability-mass curves



EOS fit
• Purely phenomenological EOS with 4 free parameters	


• Methods apply to any EOS with free parameters
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Step 1: Estimate masses and tidal deformability

• Can estimate parameters of each BNS inspiral from Bayes’ 
Theorem:	


!

!

!

•     	


•     : data from nth BNS event

LikelihoodPriorPosterior

Evidence

p(~✓|dn) =
p(~✓)p(dn|~✓)

p(dn)

~✓ = {dL,↵, �, , ◆, tc,�c,M, ⌘, ⇤̃, �⇤̃}

dn



• Can estimate parameters of each BNS inspiral from Bayes’ 
Theorem:	


!

!

!

• Time series of stationary, Gaussian noise has the distribution	


!

!

• Likelihood of observing data d for gravitational wave model  
with parameters 	


!

• where (data) = (noise) + (GW signal)

Step 1: Estimate masses and tidal deformability
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Step 1: Estimate masses and tidal deformability

• Can estimate parameters of each BNS inspiral from Bayes’ 
Theorem:	


!

!

!

• Use Markov Chain Monte Carlo (MCMC) to sample 
posterior and marginalize over nuisance parameters

LikelihoodPriorPosterior

Evidence

p(~✓|dn) =
p(~✓)p(dn|~✓)

p(dn)

p(M, ⌘, ⇤̃|dn) =
Z

p(~✓|dn)d~✓nuisance



Step 1: Estimate masses and tidal deformability

68% Credible region	

95%	

99.7%	


3-detector LIGO-Virgo network with network SNR=20	

Parameters estimated with LALInferenceMCMC



Step 1: Estimate masses and tidal deformability
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Step 1: Estimate masses and tidal deformability

68% Credible region	

95%	

99.7%	

True EOS

O(10�4)

O(10�2)

O(1)



Step 2: Estimate EOS parameters

• Use Bayes’ theorem again to estimate masses and EOS parameters:

~x = {log(p1),�1,�2,�3,M1, ⌘1, . . . ,MN , ⌘N}

LikelihoodPrior
Posterior

Evidence

p(~x|d1 . . . dN ) =
p(~x)p(d1 . . . dN |~x)

p(d1 . . . dN )



• Causality: Speed of sound must 
be less than the speed of light  

• Maximum mass: EOS must 
support observed stars with 
masses greater than 	


Step 2: Estimate EOS parameters

• Use Bayes’ theorem again to estimate masses and EOS parameters:

vs =
p

dp/d✏ < c

1.93M�

LikelihoodPrior
Posterior

Evidence

p(~x|d1 . . . dN ) =
p(~x)p(d1 . . . dN |~x)

p(d1 . . . dN )



• Total likelihood is product of likelihoods for each independent event	


• Rewritten in terms of the EOS parameters instead of tidal deformability

Step 2: Estimate EOS parameters

• Use Bayes’ theorem again to estimate masses and EOS parameters:

LikelihoodPrior
Posterior

Evidence

p(~x|d1 . . . dN ) =
p(~x)p(d1 . . . dN |~x)

p(d1 . . . dN )

Marginalized posterior for single event
p(d1, . . . , dN |~x) =

NY

n=1

p(Mn, ⌘n, ⇤̃n|dn)|⇤̃n=⇤̃(Mn,⌘n,EOS)

• EOS parameters found from MCMC simulation for 4+2N parameters 
by marginalizing over the 2N mass parameters



Simulating a population of BNS events

• Sampled a year of data using the standard “realistic” event rate	


• ~40 BNS events/year for single detector with SNR>8	


• Masses sampled uniformly in 	


• Chose MPA1 to be “true” EOS when calculating tidal parameters 
for these events	


• Injected waveforms into simulated noise for the 3-detector 
LIGO-Virgo network

[1.2M�, 1.6M�]



Results for 1 year of data



Results for 1 year of data



Higher mass NS observations

• Black widow pulsars may have 
particularly high masses, but large 
systematic uncertainties	


• PSR B1957+20:	


• PSR J1311-3430:	


• Higher mass NS observations improve 
the measurability at higher masses 

2.40± 0.12M�

2.68± 0.14M�



• Simulated BNS populations where all 
the masses were fixed at 
           ,            , or	


• Errors are smallest near the masses of 
the simulated population	


• Can still measure NS properties at 
other masses due to prior constraints 
on the equation of state

Range of sampled BNS masses

1.0M� 1.4M� 1.8M�



Other EOS models



Systematic errors
• Several ways to calculate waveform phase from energy and luminosity 

expressions	


• Phase difference between 3PN and 3.5PN as big as tidal effect	


• Phase difference between TaylorT1 and TaylorT4 as big as tidal effect
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Systematic errors
!

• Injected TaylorF2, TaylorT1, 
TaylorT4 waveform models	


• Used TaylorF2 as template



• Several ways to improve the waveform model	


• Effective one body waveforms 	


• Reproduce BBH waveforms to high accuracy	


• Recent comparisons with BNS simulations are promising	


• Numerical simulations are the only solution once NSs are in contact
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Conclusions

• The BNS inspiral waveform provides detailed EOS information	


• 1 year of data will be sufficient to measure (statistical error):	


• Pressure to less than a factor of 2	


• Radius to +/- 1 km	


• Systematic errors from inexact waveform templates will be 
primary difficulty in measuring the EOS	


• Will be reduced in the near future with improved 
waveform models



Conclusions

• The BNS inspiral waveform provides detailed EOS information	


• 1 year of data will be sufficient to measure (statistical error):	


• Pressure to less than a factor of 2	


• Radius to +/- 1 km	


• Systematic errors from inexact waveform templates will be 
primary difficulty in measuring the EOS	


• Will be reduced in the near future with improved 
waveform models

Thank you


